Graphical Abstract

Semiconducting heterojunctions (HJs), comprised of atomically thin transition metal dichalcogenides (TMDs), have shown great potentials in electronic and optoelectronic applications. Organic/TMD hybrid bilayers hold enhanced pumping efficiency of interfacial excitons, tunable electronic structures and optical properties, and other superior advantages to these inorganic HJs. Here, we report a direct probe of the interfacial electronic structures of a crystalline monolayer (ML) perylene-3, 4, 9, 10-tetracarboxylic-dianhydride (PTCDA)/ML-WSe2 HJ using scanning tunneling microscopy, photoluminescence, and first-principle calculations. Strong PTCDA/WSe2 interfacial interactions lead to appreciable hybridization of the WSe2 conduction band with PTCDA unoccupied states, accompanying with a significant amount of PTCDA-to-WSe2 charge transfer (by 0.06 e/PTCDA). A type-Ⅱ band alignment was directly determined with a valence band offset of ~ 1.69 eV, and an apparent conduction band offset of ~ 1.57 eV. Moreover, we found that the local stacking geometry at the HJ interface differentiates the hybridized interfacial states.
Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419-425.
Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676-681.
Furchi, M. M.; Pospischil, A.; Libisch, F.; Burgdörfer, J.; Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 2014, 14, 4785-4791.
Gong, C.; Zhang, H. J.; Wang, W. H.; Colombo, L.; Wallace, R. M.; Cho, K. Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Appl. Phys. Lett. 2013, 103, 053513.
Chiu, M. H.; Zhang, C. D.; Shiu, H. W.; Chuu, C. P.; Chen, C. H.; Chang, C. S.; Chen, C. H.; Chou, M. Y.; Shih, C. K.; Li, L. J. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 2015, 6, 7666.
Zhang, C. D.; Li, M. Y.; Tersoff, J.; Han, Y. M.; Su, Y. S.; Li, L. J.; Muller, D. A.; Shih, C. K. Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol. 2018, 13, 152-158.
Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682-686.
Park, J. H.; Sanne, A.; Guo, Y. Z.; Amani, M.; Zhang, K. H.; Movva, H. C. P.; Robinson, J. A.; Javey, A.; Robertson, J.; Banerjee, S. K. et al. Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface. Sci. Adv. 2017, 3, e1701661.
Sanchez, O. L.; Ovchinnikov, D.; Misra, S.; Allain, A.; Kis, A. Valley polarization by spin injection in a light-emitting van der Waals heterojunction. Nano Lett. 2016, 16, 5792-5797.
Kim, J.; Jin, C. H.; Chen, B.; Cai, H.; Zhao, T.; Lee, P.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Tongay, S. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 2017, 3, e1700518.
Surrente, A.; Dumcenco, D.; Yang, Z.; Kuc, A.; Jing, Y.; Heine, T.; Kung, Y. C.; Maude, D. K.; Kis, A.; Plochocka, P. Defect healing and charge transfer-mediated valley polarization in MoS2/MoSe2/MoS2 trilayer van der Waals heterostructures. Nano Lett. 2017, 17, 4130-4136.
Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.
Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311-1314.
Reese, C.; Bao Z. N. Organic single-crystal field-effect transistors. Mater. Today 2007, 10, 20-27.
Capelli, R.; Toffanin, S.; Generali, G.; Usta, H.; Facchetti, A.; Muccini, M. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nat. Mater. 2010, 9, 496-503.
McCarthy, M. A.; Liu, B.; Donoghue, E. P.; Kravchenko, I.; Kim, D. Y.; So, F.; Rinzler, A. G. Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 2011, 332, 570-573.
Kobitski, A. Y.; Scholz, R.; Zahn, D. R. T.; Wagner, H. P. Time-resolved photoluminescence study of excitons in α-PTCDA as a function of temperature. Phys. Rev. B 2003, 68, 155201.
Zhao, H. J.; Zhao, Y. B.; Song, Y. X.; Zhou, M.; Lv, W.; Tao, L.; Feng, Y. Z.; Song, B. Y.; Ma, Y.; Zhang, J. Q. et al. Strong optical response and light emission from a monolayer molecular crystal. Nat. Commun. 2019, 10, 5589.
Cheng, C. H.; Li, Z. D.; Hambarde, A.; Deotare, P. B. Efficient energy transfer across organic-2D inorganic heterointerfaces. ACS Appl. Mater. Inter. 2018, 10, 39336-39342.
Gu, J.; Liu, X.; Lin, E. C.; Lee, Y. H.; Forrest, S. R.; Menon, V. M. Dipole-aligned energy transfer between excitons in two-dimensional transition metal dichalcogenide and organic semiconductor. ACS Photonics 2018, 5, 100-104.
Vélez, S.; Ciudad, D.; Island, J.; Buscema, M.; Txoperena, O.; Parui, S.; Steele, G. A.; Casanova, F.; van der Zant, H. S. J; Castellanos-Gomez, A. et al. Gate-tunable diode and photovoltaic effect in an organic-2D layered material p-n junction. Nanoscale 2015, 7, 15442-15449.
Jariwala, D.; Howell, S. L.; Chen, K. S.; Kang, J. M.; Sangwan, V. K.; Filippone, S. A.; Turrisi, R.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Hybrid, gate-tunable, van der Waals p-n heterojunctions from pentacene and MoS2. Nano Lett. 2016, 16, 497-503.
Li, W. S.; Zhou, J.; Cai, S. H.; Yu, Z. H.; Zhang, J. L.; Fang, N.; Li, T. T.; Wu, Y.; Chen, T. S.; Xie, X. Y. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2019, 2, 563-571.
Arramel; Yin, X. M.; Wang, Q. X.; Zheng, Y. J.; Song, Z. B.; bin Hassan, M. H.; Qi, D. Y.; Wu, J. S.; Rusydi, A.; Wee, A. T. S. Molecular alignment and electronic structure of N, N'-Dibutyl-3, 4, 9, 10-perylene-tetracarboxylic-diimide molecules on MoS2 Surfaces. ACS Appl. Mater. Inter. 2017, 9, 5566-5573.
Song, Z. B.; Schultz, T.; Ding, Z. J.; Lei, B.; Han, C.; Amsalem, P.; Lin, T. T.; Chi, D. Z.; Wong, S. L.; Zheng, Y. J. et al. Electronic properties of a 1D intrinsic/p-doped heterojunction in a 2D transition metal dichalcogenide semiconductor. ACS Nano 2017, 11, 9128-9135.
Huang, Y. L.; Zheng, Y. J.; Song, Z. B.; Chi, D. Z.; Wee, A. T. S.; Quek, S. Y. The organic-2D transition metal dichalcogenide heterointerface. Chem. Soc. Rev. 2018, 47, 3241-3264.
Zhang, L. L.; Sharma, A.; Zhu, Y.; Zhang, Y. H.; Wang, B. W.; Dong, M. H.; Nguyen, H. T.; Wang, Z.; Wen, B.; Cao, Y. J. et al. Efficient and layer-dependent exciton pumping across atomically thin organic-inorganic type-Ⅰ heterostructures. Adv. Mater. 2018, 30, e1803986.
Chen, X. Q.; Liu, X. L.; Wu, B.; Nan, H. Y.; Guo, H.; Ni, Z. H.; Wang, F. Q.; Wang, X. M.; Shi, Y.; Wang, X. R. Improving the performance of graphene phototransistors using a heterostructure as the light-absorbing layer. Nano Lett. 2017, 17, 6391-6396.
Hirade, M.; Nakanotani, H.; Yahiro, M.; Adachi, C. Formation of organic crystalline nanopillar arrays and their application to organic photovoltaic cells. ACS Appl. Mater. Inter. 2011, 3, 80-83.
Obaidulla, S. M.; Habib, M. R.; Khan, Y.; Kong, Y. H.; Liang, T.; Xu, M. S. MoS2 and perylene derivative based type-Ⅱ heterostructure: bandgap engineering and giant photoluminescence enhancement. Adv. Mater. Inter. 2020, 7, 1901197.
Wang, S. Y.; Chen, C. S.; Yu, Z. H.; He, Y. L.; Chen, X. Y.; Wan, Q.; Shi, Y.; Zhang, D. W.; Zhou, H.; Wang, X. R. et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 2019, 31, 1806227.
Habib, M. R.; Li, H. F.; Kong, Y. H.; Liang, T.; Obaidulla, S. M.; Xie, S.; Wang, S. P.; Ma, X. Y.; Su, H. X.; Xu, M. S. Tunable photoluminescence in a van der Waals heterojunction built from a MoS2 monolayer and a PTCDA organic semiconductor. Nanoscale 2018, 10, 16107-16115.
Zhu, T.; Yuan, L.; Zhao, Y.; Zhou, M. W.; Wan, Y.; Mei, J. G.; Huang, L. B. Highly mobile charge-transfer excitons in two-dimensional WS2/tetracene heterostructures. Sci. Adv. 2018, 4, eaao3104.
Zhang, H. M.; Gustafsson, J. B.; Johansson, L. S. O. STM study of the electronic structure of PTCDA on Ag/Si(111)-
Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; Jin, C. H.; Chou, M. Y.; Shih, C. K. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.
Schmitz-Hübsch, T.; Fritz, T.; Sellam, F.; Staub, R.; Leo, K. Epitaxial growth of 3, 4, 9, 10-perylene-tetracarboxylic-dianhydride on Au(111): A STM and RHEED study. Phys. Rev. B 1997, 55, 7972-7976.
Wagner, T.; Bannani, A.; Bobisch, C.; Karacuban, H.; Möller, R. The initial growth of PTCDA on Cu(111) studied by STM. J. Phys. Condens. Matter 2007, 19, 056009.
Zhang, C. D.; Chen, Y. X.; Johnson, A.; Li, M. Y.; Li, L. J.; Mende, P. C.; Feenstra, R. M.; Shih, C. K. Probing critical point energies of transition metal dichalcogenides: Surprising indirect gap of single layer WSe2. Nano Lett. 2015, 15, 6494-6500.
Zheng, Y. J.; Huang, Y. L.; Chen, Y. F.; Zhao, W. J.; Eda, G.; Spataru, C. D.; Zhang, W. J.; Chang, Y. H.; Li, L. J.; Chi, D. Z. et al. Heterointerface screening effects between organic monolayers and monolayer transition metal dichalcogenides. ACS Nano 2016, 10, 2476-2484.
Wang, Q. Y.; Zhang, W. H.; Wang, L. L.; He, K.; Ma, X. C.; Xue, Q. K. Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates. J. Phys. Condens. Matter 2013, 25, 095002.
Liu, H. J.; Jiao, L.; Xie, L.; Yang, F.; Chen, J. L.; Ho, W. K.; Gao, C. L.; Jia, J. F.; Cui, X. D.; Xie, M. H. Molecular-beam epitaxy of monolayer and bilayer WSe2: A scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy. 2D Mater. 2015, 2, 034004.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.
Lee, K.; Murray, É. D.; Kong, L. Z.; Lundqvist, B. I.; Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 2010, 82, 081101(R).
Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 2009, 22, 022201.
Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.