Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Chirality is an indispensable integral of biological system. As an important part of organisms, chiral organic structure of bone has been extensively investigated. However, the chirality of bone minerals is unclear and not fully determined. Here, we report nine levels of fractal-like chirality of bone minerals by combining electron microscopic and spectrometric characterizations. The primary helically twisted acicular apatite crystals inside collagen fibrils and between fibrils merge laterally to form secondary helical subplatelets. The chiral arrangement of several subplatelets forms tertiary spiral mineral platelets. Further coherent stepwise stacking of mineral platelets with collagen fibrils leads to quaternary to ninth levels, which reconciled the previous conflicting models. The optical activities in the UV–visible, infrared and terahertz regions demonstrated chirality from atomic to macroscopic scales based on circularly selective absorption and Bragg resonance at different levels of chirality. Our findings provide new insight into the structural integrity of bone, osteology, forensic medicine and archaeology and inspire the design of novel biomaterials.
Watson, J. D.; Crick, F. H. C. The structure of DNA. Cold Spring Harb. Symp. 1953, 18, 123–131.
Branden, C.; Tooze, J. Introduction to Protein Structure; Garland: New York, 1991.
Inaki, M.; Liu, J. Y.; Matsuno, K. Cell chirality: Its origin and roles in left–right asymmetric development. Philos. Trans. Roy. Soc. B 2016, 371, 20150403.
Matsui, T.; Bessho, Y. Left-right asymmetry in zebrafish. Cell. Mol. Life Sci. 2012, 69, 3069–3077.
Wegst, U. G. K.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.
Fratzl, P.; Weinkamer, R. Nature's hierarchical materials. Prog. Mater. Sci. 2007, 52, 1263–1334.
Turner, C. H.; Burr, D. B. Basic biomechanical measurements of bone: A tutorial. Bone 1993, 14, 595–608.
Orgel, J. P. R. O.; Irving, T. C.; Miller, A.; Wess, T. J. Microfibrillar structure of type Ⅰ collagen in situ. Proc. Natl. Acad. Sci. USA 2006, 103, 9001–9005.
Giraud-Guille, M. M. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif. Tissue Int. 1988, 42, 167–180.
Havers, C. Osteologia Nova, or Some New Observations of the Bones, and the Parts Belonging to Them, with the Manner of Their Accretion and Nutrition; Samuel Smith: London, 1691.
Weiner, S.; Wagner, H. D. The material bone: Structure-mechanical function relations. Annu. Rev. Mater. Sci. 1998, 28, 271–298.
Reznikov, N.; Shahar, R.; Weiner, S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014, 10, 3815–3826.
Reznikov, N.; Bilton, M.; Lari, L.; Stevens, M. M.; Kröger, R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science 2018, 360, eaao2189.
Alexander, B.; Daulton, T. L.; Genin, G. M.; Lipner, J.; Pasteris, J. D.; Wopenka, B.; Thomopoulos, S. The nanometre-scale physiology of bone: Steric modelling and scanning transmission electron microscopy of collagen–mineral structure. J. Roy. Soc. Interface 2012, 9, 1774–1786.
Ma, W.; Xu, L. G.; de Moura, A. F.; Wu, X. L.; Kuang, H.; Xu, C. L.; Kotov, N. A. Chiral inorganic nanostructures. Chem. Rev. 2017, 117, 8041–8093.
Che, S. N.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Terasaki, O.; Tatsumi, T. Synthesis and characterization of chiral mesoporous silica. Nature 2004, 429, 281–284.
Duan, Y. Y.; Liu, X.; Han, L.; Asahina, S.; Xu, D. D.; Cao, Y. Y.; Yao, Y.; Che, S. A. Optically active chiral CuO "nanoflowers". J. Am. Chem. Soc. 2014, 136, 7193–7196.
Duan, Y. Y.; Han, L.; Zhang, J. L.; Asahina, S.; Huang, Z. H.; Shi, L.; Wang, B.; Cao, Y. Y.; Yao, Y.; Ma, L. H. et al. Optically active nanostructured ZnO films. Angew. Chem., Int. Ed. 2015, 54, 15170–15175.
Cook, T. A. The Curves of Life: Being an Account of Spiral Formations and Their Application to Growth in Nature, to Science and to Art; with Special Reference to the Manuscripts of Leonardo Da Vinci; Dover Publications, 1979.
Heřt, J.; Fiala, P.; Petrtýl, M. Osteon orientation of the diaphysis of the long bones in man. Bone 1994, 15, 269–277.
Falconer, K. Fractal Geometry: Mathematical Foundations and Applications; Wiley: Chichester, 2003.
Wagermaier, W.; Gupta, H. S.; Gourrier, A.; Burghammer, M.; Roschger, P.; Fratzl, P. Spiral twisting of fiber orientation inside bone lamellae. Biointerphases 2006, 1, 1–5.
Weiner, S.; Traub, W.; Wagner, H. D. Lamellar bone: Structure– function relations. J. Struct. Biol. 1999, 126, 241–255.
Reznikov, N.; Shahar, R.; Weiner, S. Three-dimensional structure of human lamellar bone: The presence of two different materials and new insights into the hierarchical organization. Bone 2014, 59, 93–104.
McNally, E. A.; Schwarcz, H. P.; Botton, G. A.; Arsenault, A. L. A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. PLoS One 2012, 7, e29258.
Liu, Y.; Wang, J.; Kim, S.; Sun, H.; Yang, F. Y.; Fang, Z. X.; Tamura, N.; Zhang, R. P.; Song, X. H.; Wen, J. G. et al. Helical van der Waals crystals with discretized Eshelby twist. Nature 2019, 570, 358–362.
Robbie, K.; Broer, D. J.; Brett, M. J. Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure. Nature 1999, 399, 764–766.
Shopsowitz, K. E.; Qi, H.; Hamad, W. Y.; MacLachlan, M. J. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 2010, 468, 422–425.
Keller, D.; Bustamante, C. Theory of the interaction of light with large inhomogeneous molecular aggregates. Ⅱ. Psi-type circular dichroism. J. Chem. Phys. 1986, 84, 2972–2980.
Xu, J.; Ramian, G. J.; Galan, J. F.; Savvidis, P. G.; Scopatz, A. M.; Birge, R. R.; Allen, S. J.; Plaxco, K. W. Terahertz circular dichroism spectroscopy: A potential approach to the in situ detection of life's metabolic and genetic machinery. Astrobiology 2003, 3, 489–504.
Nafie, L. A. Vibrational Optical Activity: Principles and Applications; Wiley: Chichester, 2011.
Shanmugam, G.; Polavarapu, P. L. Structural transition during thermal denaturation of collagen in the solution and film states. Chirality 2009, 21, 152–159.
Avakyan, L. A.; Paramonova, E. V.; Coutinho, J.; Öberg, S.; Bystrov, V. S.; Bugaev, L. A. Optoelectronics and defect levels in hydroxyapatite by first-principles. J. Chem. Phys. 2018, 148, 154706.
de Carvalho Almança Lopes, C.; Limirio, P. H. J. O.; Novais, V. R.; Dechichi, P. Fourier transform infrared spectroscopy (FTIR) application chemical characterization of enamel, dentin and bone. Appl. Spectrosc. Rev. 2018, 53, 747–769.
Khalil, S.; El Hotaby, W.; Bassyouni, G. Terahertz pulsed spectroscopy for optical and dielectric properties of demineralized bone matrix, collagen and hydroxyapatite. Egypt. J. Chem. 2019, 62, 327–346.
George, A.; Veis, A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem. Rev. 2008, 108, 4670–4693.
Wang, Y.; Azaïs, T.; Robin, M.; Vallée, A.; Catania, C.; Legriel, P.; Pehau-Arnaudet, G.; Babonneau, F.; Giraud-Guille, M. M.; Nassif, N. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat. Mater. 2012, 11, 724–733.
Chen, P. Y.; Toroian, D.; Price, P. A.; Mckittrick, J. Minerals form a continuum phase in mature cancellous bone. Calcif. Tissue Int. 2011, 88, 351–361.
Pryor, A. Jr.; Yang, Y.; Rana, A.; Gallagher-Jones, M.; Zhou, J. H.; Lo, Y. H.; Melinte, G.; Chiu, W.; Rodriguez, J. A.; Miao, J. W. GENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging. Sci. Rep. 2017, 7, 10409.