AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Direct synthesis of large-area Al-doped graphene by chemical vapor deposition: Advancing the substitutionally doped graphene family

Sami Ullah1,2,§Yu Liu1,2,§Maria Hasan3,4Wenwen Zeng1,2Qitao Shi1,2Xiaoqin Yang5Lei Fu6Huy Q. Ta7Xueyu Lian1,2Jingyu Sun1,2Ruizhi Yang1,2Lijun Liu5Mark H. Rümmeli1,2,4,7,8( )
College of Energy Soochow Institute for Energy and Materials InnovationsSoochow UniversitySuzhou215006China
Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu ProvinceSoochow UniversitySuzhou215006China
NUTECH School of Applied Sciences & Humanities and Computer Engineering DepartmentNational University of TechnologyIslamabad42000Pakistan
Centre of Polymer and Carbon MaterialsPolish Academy of Sciences, M. Curie-Sklodowskiej 34Zabrze41-819Poland
School of Energy and Power EngineeringXi'an Jiaotong UniversityXi'an710049China
College of Chemistry and Molecular ScienceWuhan UniversityWuhan430072China
Institute for Complex Materials IFW Dresden 20 Helmholtz StrasseDresden01069Germany
Institute of Environmental TechnologyVŠB-Technical University of Ostrava, 17. listopadu 15Ostrava708 33Czech Republic

§ Sami Ullah and Yu Liu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Graphene doping continues to gather momentum because it enables graphene properties to be tuned, thereby affording new properties to, improve the performance of, and expand the application potential of graphene. Graphene can be chemically doped using various methods such as surface functionalization, hybrid composites (e.g., nanoparticle decoration), and substitution doping, wherein C atoms are replaced by foreign ones in the graphene lattice. Theoretical works have predicted that graphene could be substitutionally doped by aluminum (Al) atoms, which could hold promise for exciting applications, including hydrogen storage and evolution, and supercapacitors. Other theoretical predictions suggest that Al substitutionally doped graphene (AlG) could serve as a material for gas sensors and the catalytic decomposition of undesirable materials. However, fabricating Al substitutionally doped graphene has proven challenging until now. Herein, we demonstrate how controlled-flow chemical vapor deposition (CVD) implementing a simple solid precursor can yield high-quality and large-area monolayer AlG, and this synthesis is unequivocally confirmed using various characterization methods including local electron energy-loss spectroscopy (EELS). Detailed high-resolution transmission electron microscopy (HRTEM) shows numerous bonding configurations between the Al atoms and the graphene lattice, some of which are not theoretically predicted. Furthermore, the produced AlG shows a CO2 capturability superior to those of other substitutionally doped graphenes.

Electronic Supplementary Material

Download File(s)
12274_2021_3655_MOESM1_ESM.pdf (2.4 MB)

References

1

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200.

2

Araujo, P. T.; Terrones, M.; Dresselhaus, M. S. Defects and impurities in graphene-like materials. Mater. Today 2012, 15, 98-109.

3

Ullah, S.; Hasan, M.; Ta, H. Q.; Zhao, L.; Shi, Q. T.; Fu, L.; Choi, J.; Yang, R. Z.; Liu, Z. F.; Rümmeli, M. H. Synthesis of doped porous 3D graphene structures by chemical vapor deposition and its applications. Adv. Funct. Mater. 2019, 29, 1904457.

4

Zhang, J.; Zhao, C.; Liu, N.; Zhang, H. X.; Liu, J. J.; Fu, Y. Q.; Guo, B.; Wang, Z. L.; Lei, S. B.; Hu, P. A. Tunable electronic properties of graphene through controlling bonding configurations of doped nitrogen atoms. Sci. Rep. 2016, 6, 28330.

5

Rümmeli, M. H.; Borowiak-Palen, E.; Gemming, T.; Pichler, T.; Knupfer, M.; Kalbác, M.; Dunsch, L.; Jost, O.; Silva, S. R. P.; Pompe, W. et al. Novel catalysts, room temperature, and the importance of oxygen for the synthesis of single-walled carbon nanotubes. Nano Lett. 2005, 5, 1209-1215.

6

Liu, H. T.; Liu, Y. Q.; Zhu, D. B. Chemical doping of graphene. J. Mater. Chem. 2011, 21, 3335-3345.

7

Guo, B. D.; Fang, L.; Zhang, B. H.; Gong, J. R. Graphene doping: A review. Insciences J. 2011, 1, 80-89.

8

Gao, G. D.; Liu, D. D.; Tang, S. C.; Huang, C.; He, M. C.; Guo, Y.; Sun, X. D.; Gao, B. Heat-initiated chemical functionalization of graphene. Sci. Rep. 2016, 6, 20034.

9

Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012, 112, 6156-6214.

10

Li, B. J.; Cao, H. Q.; Shao, J.; Qu, M. Z.; Warner, J. H. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. J. Mater. Chem. 2011, 21, 5069-5075.

11

Yang, L. G.; Wang, L. Z.; Xing, M. Y.; Lei, J. Y.; Zhang, J. L. Silica nanocrystal/graphene composite with improved photoelectric and photocatalytic performance. Appl. Catal. B: Environ. 2016, 180, 106-112.

12

Kim, K. N.; Pham, V. P.; Yeom, G. Y. Chlorine radical doping of a few layer graphene with low damage. ECS J. Solid State Sci. Technol. 2015, 4, N5095-N5097.

13

Hasan, M.; Meiou, W.; Yulian, L.; Ullah, S.; Ta, H. Q.; Zhao, L.; Mendes, R. G.; Malik, Z. P.; Ahmad, N. M.; Liu, Z. F. et al. Direct chemical vapor deposition synthesis of large area single-layer brominated graphene. RSC Adv. 2019, 9, 13527-13532.

14

Granzier-Nakajima, T.; Fujisawa, K.; Anil, V.; Terrones, M.; Yeh, Y. T. Controlling nitrogen doping in graphene with atomic precision: Synthesis and characterization. Nanomaterials 2019, 9, 425.

15

Muñoz-Sandoval, E.; Fajardo-Díaz, J. L.; Sánchez-Salas, R.; Cortés-López, A. J.; López-Urías, F. Two sprayer CVD synthesis of nitrogen-doped carbon sponge-type nanomaterials. Sci. Rep. 2018, 8, 2983.

16

Hasan, M.; Wang, M. O.; Liu, Y. L.; Ta, H. Q.; Zhao, L.; Mendes, R. G.; Oswald, S.; Akhter, Z.; Malik, Z. P.; Ahmad, N. M. Low pressure chemical vapor deposition synthesis of large area hetero-doped mono-and few-layer graphene with nitrogen and oxygen species. Mater. Res. Express 2019, 6, 055604.

17

Ito, Y.; Shen, Y.; Hojo, D.; Itagaki, Y.; Fujita, T.; Chen, L. H.; Aida, T.; Tang, Z.; Adschiri, T.; Chen, M. W. Correlation between chemical dopants and topological defects in catalytically active nanoporous graphene. Adv. Mater. 2016, 28, 10644-10651.

18

Jiang, Q. G.; Ao, Z. M.; Jiang, Q. First principles study on the hydrophilic and conductive graphene doped with Al atoms. Phys. Chem. Chem. Phys. 2013, 15, 10859-10865.

19

Huang, K. P.; Chi, Y. W. Metal-doped graphene and growth method of the same. U. S. Patent 2017/0263940 A1, Seotember 14, 2017.

20

Zhao, W.; Meng, Q. Y. Adsorption of methane on pristine and Al-doped graphene: A comparative study via first-principles calculation. Adv. Mater. Res. 2013, 602-604, 870-873.

21

Rad, A. S.; Foukolaei, V. P. Density functional study of Al-doped graphene nanostructure towards adsorption of CO, CO2 and H2O. Synth. Met. 2015, 210, 171-178.

22

Varghese, S. S.; Swaminathan, S.; Singh, K. K.; Mittal, V. Ab initio study on gas sensing properties of group Ⅲ (B, Al and Ga) doped graphene. Comput. Condens. Matter 2016, 9, 40-55.

23

Qin, Y.; Wu, H. H.; Zhang, L. A.; Zhou, X.; Bu, Y. F.; Zhang, W.; Chu, F. Q.; Li, Y. T.; Kong, Y.; Zhang, Q. B. et al. Aluminum and Nitrogen codoped graphene: Highly active and durable electrocatalyst for oxygen reduction reaction. ACS Catal. 2019, 9, 610-619.

24

Ullah, S.; Denis, P. A.; Sato, F. Triple-doped monolayer graphene with boron, nitrogen, aluminum, silicon, phosphorus, and sulfur. ChemPhysChem 2017, 18, 1864-1873.

25

Peyghan, A. A.; Noei, M.; Tabar, M. B. A large gap opening of graphene induced by the adsorption of CO on the Al-doped site. J. Mol. Model. 2013, 19, 3007-3014.

26

Dai, X. S.; Shen, T.; Feng, Y.; Liu, H. C. Structure, electronic and optical properties of Al, Si, P doped penta-graphene: A first-principles study. Phys. B: Condens. Matter 2019, 574, 411660.

27

Chi, M.; Zhao, Y. P. Adsorption of formaldehyde molecule on the intrinsic and Al-doped graphene: A first principle study. Comput. Mater. Sci. 2009, 46, 1085-1090.

28

Lv, Y. A.; Zhuang, G. L.; Wang, J. G.; Jia, Y. B.; Xie, Q. Enhanced role of Al or Ga-doped graphene on the adsorption and dissociation of N2O under electric field. Phys. Chem. Chem. Phys. 2011, 13, 12472-12477.

29

Denis, P. A. Mono and dual doped monolayer graphene with aluminum, silicon, phosphorus and sulfur. Comput. Theor. Chem. 2016, 1097, 40-47.

30

Fauzi, F. B.; Ismail, E.; Ani, M. H.; Bakar, S. N. S. A.; Mohamed, M. A.; Majlis, B. Y.; Din, M. F. M.; Abid, M. A. A. M. A critical review of the effects of fluid dynamics on graphene growth in atmospheric pressure chemical vapor deposition. J. Mater. Res. 2018, 33, 1088-1108.

31

Rümmeli, M. H.; Gorantla, S.; Bachmatiuk, A.; Phieler, J.; Geißler, N.; Ibrahim, I.; Pang, J. B.; Eckert, J. On the role of vapor trapping for chemical vapor deposition (CVD) grown graphene over copper. Chem. Mater. 2013, 25, 4861-4866.

32

Wang, H.; Zhou, Y.; Wu, D.; Liao, L.; Zhao, S. L.; Peng, H. L.; Liu, Z. F. Synthesis of boron‐doped graphene monolayers using the sole solid feedstock by chemical vapor deposition. Small 2013, 9, 1316-1320.

33

Vlassiouk, I.; Smirnov, S.; Regmi, M.; Surwade, S. P.; Srivastava, N.; Feenstra, R.; Eres, G.; Parish, C.; Lavrik, N.; Datskos, P. et al. Graphene nucleation density on copper: Fundamental role of background pressure. J. Phys. Chem. C 2013, 117, 18919-18926.

34

Wu, T. L.; Yeh, C. H.; Hsiao, W. T.; Huang, P. Y.; Huang, M. J.; Chiang, Y. H.; Cheng, C. H.; Liu, R. S.; Chiu, P. W. High-performance organic light-emitting diode with substitutionally boron-doped graphene anode. ACS Appl. Mater. Interfaces 2017, 9, 14998-15004.

35

Beams, R.; Cançado, L. G.; Novotny, L. Raman characterization of defects and dopants in graphene. J. Phys. : Condens. Matter 2015, 27, 083002.

36

Comanescu, F.; Istrate, A.; Purica, M. Assessing by Raman spectroscopy the quality of CVD graphene transferred on oxidized silicon and quartz substrates. Rom. J. Inf. Sci. Tech. 2019, 22, 30-40.

37

Rümmeli, M. H.; Bachmatiuk, A.; Scott, A.; Börrnert, F.; Warner, J. H.; Hoffman, V.; Lin, J. H.; Cuniberti, G.; Büchner, B. Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano 2010, 4, 4206-4210.

38

Vecera, P.; Eigler, S.; Koleśnik-Gray, M.; Krstić, V.; Vierck, A.; Maultzsch, J.; Schäfer, R. A.; Hauke, F.; Hirsch, A. Degree of functionalisation dependence of individual Raman intensities in covalent graphene derivatives. Sci. Rep. 2017, 7, 45165.

39

Lv, R. T.; Li, Q.; Botello-Méndez, A. R.; Hayashi, T.; Wang, B.; Berkdemir, A.; Hao, Q. Z.; Elías, A. L.; Cruz-Silva, R.; Gutiérrez, H. R. et al. Nitrogen-doped graphene: Beyond single substitution and enhanced molecular sensing. Sci. Rep. 2012, 2, 586.

40

Ullah, S.; Shi, Q. T.; Zhou, J. H.; Yang, X. Q.; Ta, H. Q.; Hasan, M.; Ahmad, N. M.; Fu, L.; Bachmatiuk, A.; Rümmeli, M. H. Advances and trends in chemically doped graphene. Adv. Mater. Interfaces 2020, 7, 2000999.

41

Lv, R. T.; Chen, G. G.; Li, Q.; McCreary, A.; Botello-Méndez, A.; Morozov, S. V.; Liang, L. B.; Declerck, X.; Perea-López, N.; Cullen, D. A. et al. Ultrasensitive gas detection of large-area boron-doped graphene. Proc. Natl. Acad. Sci. USA 2015, 112, 14527-14532.

42

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210-215.

43

Zafar, Z.; Ni, Z. H.; Wu, X.; Shi, Z. X.; Nan, H. Y.; Bai, J.; Sun, L. T. Evolution of Raman spectra in nitrogen doped graphene. Carbon 2013, 61, 57-62.

44

Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47-57.

45

Ta, H. Q.; Perello, D. J.; Duong, D. L.; Han, G. H.; Gorantla, S.; Nguyen, V. L.; Bachmatiuk, A.; Rotkin, S. V.; Lee, Y. H.; Rümmeli, M. H. Stranski-krastanov and volmer-weber CVD growth regimes to control the stacking order in bilayer graphene. Nano Lett. 2016, 16, 6403-6410.

46

Vengatesh, P.; Kulandainathan, M. A. Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance. ACS Appl. Mater. Interfaces 2015, 7, 1516-1526.

47

Liu, F. C.; Dong, P.; Lu, W.; Sun, K. On formation of Al-O-C bonds at aluminum/polyamide joint interface. Appl. Surf. Sci 2019, 466, 202-209.

48

Rancourt, J. D.; Hollenhead, J. B.; Taylor, L. T. Chemistry of the interface between aluminum and polyester films. J. Adhes. 1993, 40, 267-285.

49

Zhang, G. A; Yan, P. X.; Wang, P.; Chen, Y. M.; Zhang, J. Y. The preparation and mechanical properties of Al-containing a-C: H thin films. J. Phys. D: Appl. Phys. 2007, 40, 6748.

50

Kong, C. C.; Guo, P.; Sun, L. L.; Zhou, Y.; Liang, Y. X.; Li, X. W.; Ke, P. L.; Lee, K. R.; Wang, A. Y. Tribological mechanism of diamond-like carbon films induced by Ti/Al co-doping. Surf. Coat. Technol. 2018, 342, 167-177.

51

Hayez, V.; Franquet, A.; Hubin, A.; Terryn, H. XPS study of the atmospheric corrosion of copper alloys of archaeological interest. Surf. Interface Anal. 2004, 36, 876-879.

52

Nasrollahzadeh, M.; Jaleh, B.; Jabbari, A. Synthesis, characterization and catalytic activity of graphene oxide/ZnO nanocomposites. RSC Adv. 2014, 4, 36713-36720.

53

Trivedi, M. K.; Tallapragada, R. M.; Branton, A.; Trivedi, D.; Nayak, G.; Latiyal, O.; Jana, S. Characterization of physical and structural properties of aluminium carbide powder: Impact of biofield treatment. J. Aeronaut. Aerosp. Eng 2015, 4, 1000142.

54

Yate, L.; Caicedo, J. C.; Macias, A. H.; Espinoza-Beltrán, F. J.; Zambrano, G.; Muñoz-Saldaña, J.; Prieto, P. Composition and mechanical properties of AlC, AlN and AlCN thin films obtained by r. f. magnetron sputtering. Surf. Coat. Technol. 2009, 203, 1904-1907.

55

Warner, J. H.; Schäffel, F.; Bachmatiuk, A.; Rümmeli, M. H. Graphene: Fundamentals and Emergent Applications; Elsevier: Amsterdam, 2012.

56

Markevich, A. V.; Baldoni, M.; Warner, J. H.; Kirkland, A. I.; Besley, E. Dynamic behavior of single Fe atoms embedded in graphene. J. Phys. Chem. C 2016, 120, 21998-22003.

57

Denis, P. A.; Iribarne, F. The effect of the dopant nature on the reactivity, interlayer bonding and electronic properties of dual doped bilayer graphene. Phys. Chem. Chem. Phys. 2016, 18, 24693-24703.

58

Mishra, A. K.; Ramaprabhu, S. Carbon dioxide adsorption in graphene sheets. AIP Adv. 2011, 1, 032152.

59

Jankovský, O.; Šimek, P.; Klimová, K.; Sedmidubský, D.; Matějková, S.; Pumera, M.; Sofer, Z. Towards graphene bromide: Bromination of graphite oxide. Nanoscale 2014, 6, 6065-6074.

60

He, J. J.; To, J.; Mei, J. G.; Bao, Z. N.; Wilcox, J. Facile synthesis of nitrogen-doped porous carbon for selective CO2 capture. Energy Proced. 2014, 63, 2144-2151.

61

Li, W. D.; Yang, H. Y.; Jiang, X.; Liu, Q. Highly selective CO2 adsorption of ZnO based N-doped reduced graphene oxide porous nanomaterial. Appl. Surf. Sci. 2016, 360, 143-147.

62

Kemp, K. C.; Chandra, V.; Saleh, M.; Kim, K. S. Reversible CO2 adsorption by an activated nitrogen doped graphene/polyaniline material. Nanotechnology 2013, 24, 235703.

63

Oh, J.; Mo, Y. H.; Le, V. D.; Lee, S.; Han, J.; Park, G.; Kim, Y. H.; Park, S. E.; Park, S. Borane-modified graphene-based materials as CO2 adsorbents. Carbon 2014, 79, 450-456.

64

Chowdhury, S.; Parshetti, G. K.; Balasubramanian, R. Post-combustion CO2 capture using mesoporous TiO2/graphene oxide nanocomposites. Chem. Eng. J. 2015, 263, 374-384.

65

Cao, Y.; Zhao, Y. X.; Lv, Z. J.; Song, F. J.; Zhong, Q. Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites. J. Ind. Eng. Chem. 2015, 27, 102-107.

66

Rodríguez-García, S.; Santiago, R.; López-Díaz, D.; Merchán, M. D.; Velázquez, M. M.; Fierro, J. L. G.; Palomar, J. Role of the structure of graphene oxide sheets on the CO2 adsorption properties of nanocomposites based on graphene oxide and polyaniline or Fe3O4-nanoparticles. ACS Sustainable Chem. Eng. 2019, 7, 12464-12473.

67

Varghese, A. M.; Reddy, K. S. K.; Singh, S.; Karanikolos, G. N. Performance enhancement of CO2 capture adsorbents by UV treatment: The case of self-supported graphene oxide foam. Chem. Eng. J. 2020, 386, 124022.

68

Stanly, S.; Jelmy, E. J.; Nair, C. P. R.; John, H. Carbon dioxide adsorption studies on modified montmorillonite clay/reduced graphene oxide hybrids at low pressure. J. Environ. Chem. Eng. 2019, 7, 103344.

69

Zhou, D.; Cheng, Q. Y.; Cui, Y.; Wang, T.; Li, X. X.; Han, B. H. Graphene-terpyridine complex hybrid porous material for carbon dioxide adsorption. Carbon 2014, 66, 592-598.

Nano Research
Pages 1310-1318
Cite this article:
Ullah S, Liu Y, Hasan M, et al. Direct synthesis of large-area Al-doped graphene by chemical vapor deposition: Advancing the substitutionally doped graphene family. Nano Research, 2022, 15(2): 1310-1318. https://doi.org/10.1007/s12274-021-3655-x
Topics:

826

Views

25

Crossref

28

Web of Science

28

Scopus

2

CSCD

Altmetrics

Received: 09 February 2021
Revised: 01 June 2021
Accepted: 07 June 2021
Published: 26 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return