Graphical Abstract

Surface Lewis acid-base sites in crystal structure may influence the physicochemical properties and the catalytic performances in nanozymes. Understanding the synergistic effect mechanism of Co3O4 nanozymes towards substances (3, 3o, 5, 5o-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2)) induced by surface Lewis acid-base sites is important to enhance the efficiency for peroxidase-like reaction. Herein, ultrathin porous Co3O4 nanosheets with abundant Lewis acid-base sites were prepared by sodium borohydride (NaBH4) reduction treatment, which exhibited high-efficiency peroxidase-like activity compared with original Co3O4 nanosheets. The Lewis acid-base sites for ultrathin porous Co3O4 nanosheets nanozyme were owing to the coordination unsaturation of Co ions and the formation of defect structure. Ultrathin porous Co3O4 nanosheets had 18.26-fold higher catalytic efficiency (1.27×10-2 s-1dmM-1) than that of original Co3O4 (6.95×10-4 s-1dmM-1) in oxidizing TMB substrate. The synergistic effect of surface acid and base sites can enhance the interfacial electron transfer process of Co3O4 nanosheets, which can be a favor of absorption substrates and the generation of reactive intermediates such as radicals. Furthermore, the limit of detection of hydroquinol was 0.58 μM for ultrathin porous Co3O4 nanosheets, 965-fold lower than original Co3O4 (560 μM). Besides, the linear range of ultrathin porous Co3O4 nanosheets was widely with the concentration of 5.0-1, 000 μM. Colorimetric detection of hydroquinol by agarose-based hydrogel membrane was provided based on excellent peroxidase-like properties. This study provided insights into designing high-performance nanozymes for peroxidase-like catalysis via a strategy of solid surface acid-base sites engineering.
Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (Ⅱ). Chem. Soc. Rev. 2019, 48, 1004-1076.
Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506-1520.
McVey, C.; Logan, N.; Thanh, N. T. K.; Elliott, C.; Cao, C. Unusual switchable peroxidase-mimicking nanozyme for the determination of proteolytic biomarker. Nano Res. 2019, 12, 509-516.
Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577-583.
Wang, H.; Wan, K. W.; Shi, X. H. Recent advances in nanozyme research. Adv. Mater. 2019, 31, 1805368.
Cui, S. Q.; Zhang, J. J.; Ding, Y. P.; Gu, S. Q.; Hu, P.; Hu, Z. Q. Rectangular flake-like mesoporous NiCo2O4 as enzyme mimic for glucose biosensing and biofuel cell. Sci. China Mater. 2017, 60, 766-776.
Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190-2200.
Zhang, Z. J.; Zhang, X. H.; Liu, B. W.; Liu, J. W. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 2017, 139, 5412-5419.
Lu, W. H.; Zhang, J. X.; Li, N. L.; You, Z.; Feng, Z. Y.; Natarajan, V.; Chen, J.; Zhan, J. H. Co3O4@β-cyclodextrin with synergistic peroxidase-mimicking performance as a signal magnification approach for colorimetric determination of ascorbic acid. Sens. Actuators B Chem. 2020, 303, 127106.
Zhang, P.; Sun, D. R.; Cho, A.; Weon, S.; Lee, S.; Lee, J. W.; Han, J. W.; Kim, D. P.; Choi, W. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 2019, 10, 940.
Wang, X. Y.; Gao, X. J.; Qin, L.; Wang, C. D.; Song, L.; Zhou, Y. N.; Zhu, G. Y.; Cao, W.; Lin, S. C.; Zhou, L. Q. et al. eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nat. Commun. 2019, 10, 704.
Meng, Y. X.; Zhao, K. F.; Zhang, Z. K.; Gao, P.; Yuan, J.; Cai, T.; Tong, Q.; Huang, G.; He, D. N. Effects of crystal structure on the activity of MnO2 nanorods oxidase mimics. Nano Res. 2020, 13, 709-718.
Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125-1148.
Hao, Z. F.; Shen, Z. R.; Li, Y.; Wang, H. T.; Zheng, L. R.; Wang, R. H.; Liu, G. Q.; Zhan, S. H. The role of alkali metal in α-MnO2 catalyzed ammonia-selective catalysis. Angew. Chem. , Int. Ed. 2019, 58, 6351- 6356.
Zhang, X. F.; Chang, L.; Yang, Z. J.; Shi, Y. N.; Long, C.; Han, J. Y.; Zhang, B. H.; Qiu, X. Y.; Li, G. D.; Tang, Z. Y. Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis. Nano Res. 2019, 12, 437-440.
Geng, Z.; Li, B.; Liu, H. Z.; Lv, H.; Xiao, Q. F.; Ji, Y. J.; Zhang, C. M. Oxygen-doped carbon host with enhanced bonding and electron attraction abilities for efficient and stable SnO2/carbon composite battery anode. Sci. China Mater. 2018, 61, 1067-1077.
Wang, H. L.; Zhang, W. N.; Lu, L.; Liu, D. P.; Liu, D. D.; Li, T. Z.; Yan, S. C.; Zhao, S. Q.; Zou, Z. G. Dual-metal hydroxide with ordering frustrated Lewis pairs for photoactivating CO2 to CO. Appl. Catal. B Environ. 2021, 283, 119639.
Chen, J. X.; Huang, L.; Wang, Q. Q.; Wu, W. W.; Zhang, H.; Fang, Y. X.; Dong, S. J. Bio-inspired nanozyme: A hydratase mimic in a zeolitic imidazolate framework. Nanoscale 2019, 11, 5960-5966.
Thiyam, D. S.; Nongmeikapam, A. C.; Nandeibam, A. D.; Heikham, F. D.; Henam, P. S. Biosynthesized quantum dot Size Cu nanocatalyst: Peroxidase mimetic and aqueous phase conversion of fructose. ChemistrySelect 2018, 3, 12183-12191.
Dong, J. L.; Song, L. N.; Yin, J. J.; He, W. W.; Wu, Y. H.; Gu, N.; Zhang, Y. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl. Mater. Interfaces 2014, 6, 1959-1970.
Wang, Q. Q.; Chen, J. X.; Zhang, H.; Wu, W. W.; Zhang, Z. Q.; Dong, S. J. Porous Co3O4 nanoplates with pH-switchable peroxidase-and catalase-like activity. Nanoscale 2018, 10, 19140-19146.
Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. , Int. Ed. 2016, 55, 5277-5281.
Anipsitakis, G. P.; Dionysiou, D. D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 2004, 38, 3705-3712.
Huang, Z. Q.; Liu, L. P.; Qi, S. T.; Zhang, S.; Qu, Y. Q.; Chang, C. R. Understanding all-solid frustrated-Lewis-pair sites on CeO2 from theoretical perspectives. ACS Catal. 2018, 8, 546-554.
Badoei-Dalfard, A.; Sohrabi, N.; Karami, Z.; Sargazi, G. Fabrication of an efficient and sensitive colorimetric biosensor based on Uricase/ Th-MOF for uric acid sensing in biological samples. Biosens. Bioelectron. 2019, 141, 111420.
Yan, F.; Luo, T.; Jin, Q. F.; Zhou, H. X.; Sailjoi, A.; Dong, G. T.; Liu, J. Y.; Tang, W. Z. Tailoring molecular permeability of vertically-ordered mesoporous silica-nanochannel films on graphene for selectively enhanced determination of dihydroxybenzene isomers in environmental water samples. J. Hazard. Mater. 2021, 410, 124636.
Shi, B. F.; Su, Y. B.; Zhao, J. J.; Liu, R. J.; Zhao, Y.; Zhao, S. L. Visual discrimination of dihydroxybenzene isomers based on a nitrogen-doped graphene quantum dot-silver nanoparticle hybrid. Nanoscale 2015, 7, 17350-17358.
Palanisamy, S.; Thangavelu, K.; Chen, S. M.; Thirumalraj, B.; Liu, X. H. Preparation and characterization of gold nanoparticles decorated on graphene oxide@polydopamine composite: Application for sensitive and low potential detection of catechol. Sens. Actuators B Chem. 2016, 233, 298-306.
Chen, X.; Parker, S. G.; Zou, G.; Su, W.; Zhang, Q. J. β-Cyclodextrin-functionalized silver nanoparticles for the naked eye detection of aromatic isomers. ACS Nano 2010, 4, 6387-6394.
Wang, X. L.; Cheng, Z. L.; Zhou, Y.; Tammina, S. K.; Yang, Y. L. A double carbon dot system composed of N, Cl-doped carbon dots and N, Cu-doped carbon dots as peroxidase mimics and as fluorescent probes for the determination of hydroquinone by fluorescence. Microchim. Acta 2020, 187, 350.
Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206-2210.
Liang, M. M.; Fan, K. L.; Pan, Y.; Jiang, H.; Wang, F.; Yang, D. L.; Lu, D.; Feng, J.; Zhao, J. J.; Yang, L. et al. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal. Chem. 2013, 85, 308-312.
Song, Y. J.; Wei, W. L.; Qu, X. G. Colorimetric biosensing using smart materials. Adv. Mater. 2011, 23, 4215-4236.
Yan, X.; Song, Y.; Wu, X. L.; Zhu, C. Z.; Su, X. G.; Du, D.; Lin, Y. H. Oxidase-mimicking activity of ultrathin MnO2 nanosheets in colorimetric assay of acetylcholinesterase activity. Nanoscale 2017, 9, 2317-2323.
Sun, H. J.; Zhao, A. D.; Gao, N.; Li, K.; Ren, J. S.; Qu, X. G. Deciphering a nanocarbon-based artificial peroxidase: Chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew. Chem. , Int. Ed. 2015, 54, 7176- 7180.
Zheng, Y.; Gao, R.; Zheng, L. R.; Sun, L. M.; Hu, Z. B.; Liu, X. F. Ultrathin Co3O4 nanosheets with edge-enriched {111} planes as efficient catalysts for lithium-oxygen batteries. ACS Catal. 2019, 9, 3773-3782.
Wei, R. J.; Fang, M.; Dong, G. F.; Lan, C. Y.; Shu, L.; Zhang, H.; Bu, X. M.; Ho, J. C. High-index faceted porous Co3O4 nanosheets with oxygen vacancies for highly efficient water oxidation. ACS Appl. Mater. Interfaces 2018, 10, 7079-7086.
Wang, X Y.; Li, X. Y.; Mu, J. C.; Fan, S. Y.; Chen, X.; Wang, L.; Yin, Z. F.; Tadé, M.; Liu, S. M. Oxygen vacancy-rich porous Co3O4 nanosheets toward boosted NO reduction by CO and CO oxidation: Insights into the structure-activity relationship and performance enhancement mechanism. ACS Appl. Mater. Interfaces 2019, 11, 41988-41999.
Nassar, M. Y. Size-controlled synthesis of CoCO3 and Co3O4 nanoparticles by free-surfactant hydrothermal method. Mater. Lett. 2013, 94, 112-115.
Yuan, H. Y.; Aljneibi, S. A. A. A.; Yuan, J. R.; Wang, Y. X.; Liu, H.; Fang, J.; Tang, C. H.; Yan, X. H.; Cai, H.; Gu, Y. D. et al. ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. 2019, 31, 1807161.
Kuchma, M. H.; Komanski, C. B.; Colon, J.; Teblum, A.; Masunov, A. E.; Alvarado, B.; Babu, S.; Seal, S.; Summy, J.; Baker, C. H. Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomed: Nanotechnol. Biol. Med. 2010, 6, 738-744.
Menezes, P. W.; Indra, A.; Gutkin, V.; Driess, M. Boosting electrochemical water oxidation through replacement of Oh Co sites in cobalt oxide spinel with manganese. Chem. Commun. 2017, 53, 8018-8021.
Lima, T. M.; de Macedo, V.; Silva, D. S. A.; Castelblanco, W. N.; Pereira, C. A.; Roncolatto, R. E.; Gawande, M. B.; Zbořil, R.; Varma, R. S.; Urquieta-González, E. A. Molybdenum-promoted cobalt supported on SBA-15: Steam and sulfur dioxide stable catalyst for CO oxidation. Appl. Catal. B Environ. 2020, 277, 119248.
Xu, L. L.; Zhao, R. R.; Zhang, W. P. One-step high-yield production of renewable propene from bioethanol over composite ZnCeOx oxide and HBeta zeolite with balanced Brönsted/Lewis acidity. Appl. Catal. B Environ. 2020, 279, 119389.
Han, L. P.; Gao, M.; Feng, C.; Shi, L. Y.; Zhang, D. S. Fe2O3-CeO2@Al2O3 nanoarrays on Al-Mesh as SO2-tolerant monolith catalysts for NOx reduction by NH3. Environ. Sci. Technol. 2019, 53, 5946-5956.
Li, H.; Li, J.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Oxygen vacancy-mediated photocatalysis of BiOCl: Reactivity, selectivity, and perspectives. Angew. Chem. , Int. Ed. 2018, 57, 122-138.
Orecchia, P.; Yuan, W. M.; Oestreich, M. Transfer hydrocyanation of α-and α, β-substituted styrenes catalyzed by boron lewis acids. Angew. Chem. , Int. Ed. 2019, 58, 3579-3583.
Al-Fatesh, A. S.; Arafat, Y.; Kasim, S. O.; Ibrahim, A. A.; Abasaeed, A. E.; Fakeeha, A. H. In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2-reforming of methane. Appl. Catal. B Environ. 2021, 280, 119445.
Italiano, C.; Llorca, J.; Pino, L.; Ferraro, M.; Antonucci, V.; Vita, A. CO and CO2 methanation over Ni catalysts supported on CeO2, Al2O3 and Y2O3 oxides. Appl. Catal. B Environ. 2020, 264, 118494.
Al-Fatesh, A. S.; Naeem, M. A.; Fakeeha, A. H.; Abasaeed, A. E. Role of La2O3 as promoter and support in Ni/γ-Al2O3 catalysts for dry reforming of methane. Chin. J. Chem. Eng. 2014, 22, 28-37.
Muroyama, H.; Tsuda, Y.; Asakoshi, T.; Masitah, H.; Okanishi, T.; Matsui, T.; Eguchi, K. Carbon dioxide methanation over Ni catalysts supported on various metal oxides. J. Catal. 2016, 343, 178-184.
Kumar, P.; With, P.; Srivastava, V. C.; Gläser, R.; Mishra, I. M. Efficient ceria-zirconium oxide catalyst for carbon dioxide conversions: Characterization, catalytic activity and thermodynamic study. J. Alloys Compd. 2017, 696, 718-726.
Nizio, M.; Albarazi, A.; Cavadias, S.; Amouroux, J.; Galvez, M. E.; Da Costa, P. Hybrid plasma-catalytic methanation of CO2 at low temperature over ceria zirconia supported Ni catalysts. Int. J. Hydrog. Energy 2016, 41, 11584-11592.
Wu, Z. L.; Mann, A. K. P.; Li, M. J.; Overbury, S. H. Spectroscopic investigation of surface-dependent acid-base property of ceria nanoshapes. J. Phys. Chem. C 2015, 119, 7340-7350.
Bistey, T.; Nagy, I. P.; Simó, A.; Hegedűs, C. In vitro FT-IR study of the effects of hydrogen peroxide on superficial tooth enamel. J. Dent. 2007, 35, 325-330.
Zhang, X.; Yang, Q.; Lang, Y. H.; Jiang, X.; Wu, P. Rationale of 3, 3', 5, 5'-tetramethylbenzidine as the chromogenic substrate in colorimetric analysis. Anal. Chem. 2020, 92, 12400-12406.
Ling, S. K.; Wang, S. B.; Peng, Y. L. Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate. J. Hazard. Mater. 2010, 178, 385-389.
Zhou, X. J.; Kong, L. S.; Jing, Z. Y.; Wang, S. Q.; Lai, Y. C.; Xie, M.; Ma, L.; Feng, Z. Y.; Zhan, J. H. Facile synthesis of superparamagnetic β-CD-MnFe2O4 as a peroxymonosulfate activator for efficient removal of 2, 4-dichlorophenol: Structure, performance, and mechanism. J. Hazard. Mater. 2020, 394, 122528.
Eberhardt, M. K.; Santos, C.; Soto, M. A. Formation of hydroxyl radicals and Co3+ in the reaction of Co2+-EDTA with hydrogen peroxide. Catalytic effect of Fe3+. Biochim. Biophys. Acta Gen. Subj. 1993, 1157, 102-106.
Huang, H. W.; Tu, S. C.; Zeng, C.; Zhang, T. R.; Reshak, A. H.; Zhang, Y. H. Macroscopic polarization enhancement promoting photo-and piezoelectric-induced charge separation and molecular oxygen activation. Angew. Chem. , Int. Ed. 2017, 56, 11860-11864.
Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302-11336.
Dutta, A. K.; Das, S.; Samanta, S.; Samanta, P. K.; Adhikary, B.; Biswas, P. CuS nanoparticles as a mimic peroxidase for colorimetric estimation of human blood glucose level. Talanta 2013, 107, 361-367.