AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Engineering the atomic interface of porous ceria nanorod with single palladium atoms for hydrodehalogenation reaction

Zhijun Li1( )Mingyang Zhang1,§Lili Zhang2,§Xiuli Dong1,§Leipeng Leng1J. Hugh Horton1,3Jun Wang1
Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing 163318 China
Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang 110016 China
Department of Chemistry Queen's University Kingston K7L 3N6 Canada

§ Mingyang Zhang, Lili Zhang, and Xiuli Dong contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Tuning the electronic properties of single atom catalysts (SACs) between the central metal and the neighboring surface atoms has emerged as an efficient strategy to boost catalytic efficiency and metal utilization. Here we describe a simple and efficient approach to create atomically dispersed palladium atoms supported over defect-containing porous ceria nanorod containing palladium up to 0.26 wt.%. The existence of singly dispersed palladium atoms is confirmed by spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurements. This catalyst shows excellent efficiency in hydrodehalogenation reactions at low H2 pressure under mild conditions, along with satisfactory recyclability and scalability. Density functional theory (DFT) calculations reveal that the high activity stems from the spatial isolation of palladium atoms and the modified electronic structure of palladium confined in defect-containing ceria nanorod. This work may lay the foundation for the facile creation of single atom catalysts within the synthetic community and shed light on the possibility for scale-up production.

Electronic Supplementary Material

Download File(s)
12274_2021_3662_MOESM1_ESM.pdf (5.5 MB)

References

1

Alonso, F.; Beletskaya, I. P.; Yus, M. Metal-mediated reductive hydrodehalogenation of organic halides. Chem. Rev. 2002, 102, 4009–4092.

2

Payne, K. A. P.; Quezada, C. P.; Fisher, K.; Dunstan, M. S.; Collins, F. A.; Sjuts, H.; Levy, C.; Hay, S.; Rigby, S. E. J.; Leys, D. Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 2015, 517, 513–516.

3

Martin, E. T.; McGuire, C. M.; Mubarak, M. S.; Peters, D. G. Electroreductive remediation of halogenated environmental pollutants. Chem. Rev. 2016, 116, 15198–15234.

4

Min, Y.; Zhou, X.; Chen, J. J.; Chen, W. X.; Zhou, F. Y.; Wang, Z. Y.; Yang, J.; Xiong, C.; Wang, Y.; Li, F. T. et al. Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design. Nat. Commun. 2021, 12, 303.

5

Babucci, M.; Guntida, A.; Gates, B. C. Atomically dispersed metals on well-defined supports including zeolites and metal-organic frameworks: Structure, bonding, reactivity, and catalysis. Chem. Rev. 2020, 120, 11956–11985.

6

Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

7

Wang, Y. X.; Su, H. Y.; He, Y. H.; Li, L. G.; Zhu, S. Q.; Shen, H.; Xie, P. F.; Fu, X. B.; Zhou, G. Y.; Feng, C. et al. Advanced electrocatalysts with single-metal-atom active sites. Chem. Rev. 2020, 120, 12217–12314.

8

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

9

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

10

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

11

Fan, Y.; Liu, S. G.; Yi, Y.; Rong, H. P.; Zhang, J. T. Catalytic nanomaterials toward atomic levels for biomedical applications: From metal clusters to single-atom catalysts. ACS Nano 2021, 15, 2005–2037.

12

Gao, C.; Low, J. X.; Long, R.; Kong, T. T.; Zhu, J. F.; Xiong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.

13

Wei, Y. S.; Zhang, M.; Zou, R. Q.; Xu, Q. Metal-organic framework-based catalysts with single metal sites. Chem. Rev. 2020, 120, 12089–12174.

14
Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, in press, DOI: 10.1007/s12274-020-3244-4.https://doi.org/10.1007/s12274-020-3244-4
15

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

16

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

17
Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, in press, DOI: 10.1007/s40843-020-1579-7.https://doi.org/10.1007/s40843-020-1579-7
18

Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

19

Kaiser, S. K.; Chen, Z. P.; Akl, D. F.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

20

Li, Z. J.; Wang, D. H.; Wu, Y. E.; Li, Y. D. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Natl. Sci. Rev. 2018, 5, 673–689.

21

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

22

Zheng, X. B.; Li, P.; Dou, S. X.; Sun, W. P.; Pan, H. G.; Wang, D. S.; Li, Y. D. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858.

23

Li, X. N.; Yang, X. F.; Huang, Y. Q.; Zhang, T.; Liu, B. Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 2019, 31, 1902031.

24

Zhuo, H. Y.; Zhang, X.; Liang, J. X.; Yu, Q.; Xiao, H.; Li, J. Theoretical understandings of graphene-based metal single-atom catalysts: Stability and catalytic performance. Chem. Rev. 2020, 120, 12315–12341.

25

Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

26

Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.

27

Vilé, G.; Bridier, B.; Wichert, J.; Pérez-Ramírez, J. Ceria in hydrogenation catalysis: High selectivity in the conversion of alkynes to olefins. Angew. Chem. , Int. Ed. 2012, 51, 8620–8623.

28

Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987–6041.

29

Paier, J.; Penschke, C.; Sauer, J. Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment. Chem. Rev. 2013, 113, 3949–3985.

30

Riley, C.; Zhou, S.; Kunwar, D.; Riva, A. D. L.; Peterson, E.; Payne, R.; Gao, L.; Lin, S.; Guo, H.; Datye, A. Design of effective catalysts for selective alkyne hydrogenation by doping of ceria with a single-atom promotor. J. Am. Chem. Soc. 2018, 140, 12964–12973.

31

Zhou, S. L.; Gao, L. Y.; Wei, F. F.; Lin, S.; Guo, H. On the mechanism of alkyne hydrogenation catalyzed by Ga-doped ceria. J. Catal. 2019, 375, 410–418.

32

Spezzati, G.; Su, Y. Q.; Hofmann, J. P.; Benavidez, A. D.; DeLaRiva, A. T.; McCabe, J.; Datye, A. K.; Hensen, E. J. M. Atomically dispersed Pd-O species on CeO2(111) as highly active sites for low-temperature CO oxidation. ACS Catal. 2017, 7, 6887–6891.

33

Huang, Z. Q.; Liu, L. P.; Qi, S. T.; Zhang, S.; Qu, Y. Q.; Chang, C. R. Understanding all-solid frustrated-Lewis-pair sites on CeO2 from theoretical perspectives. ACS Catal. 2018, 8, 546–554.

34

Wu, Z. L.; Cheng, Y. Q.; Tao, F.; Daemen, L.; Foo, G. S.; Nguyen, L.; Zhang, X. Y.; Beste, A.; Ramirez-Cuesta, A. J. Direct neutron spectroscopy observation of cerium hydride species on a cerium oxide catalyst. J. Am. Chem. Soc. 2017, 139, 9721–9727.

35

Chen, Y. J.; Ji, S. F.; Sun, W. M.; Chen, W. X.; Dong, J. C.; Wen, J. F.; Zhang, J.; Li, Z.; Zheng, L. R.; Chen, C. et al. Discovering partially charged single-atom Pt for enhanced anti-markovnikov alkene hydrosilylation. J. Am. Chem. Soc. 2018, 140, 7407–7410.

36

Chen, Z.; Zhang, Q.; Chen, W. X.; Dong, J. C.; Yao, H. R.; Zhang, X. B.; Tong, X. J.; Wang, D. S.; Peng, Q.; Chen, C. et al. Single-site AuI catalyst for silane oxidation with water. Adv. Mater. 2018, 30, 1704720.

37

Xin, P.; Li, J.; Xiong, Y.; Wu, X.; Dong, J.; Chen, W.; Wang, Y.; Gu, L.; Luo, J.; Rong, H. et al. Revealing the active species for aerobic alcohol oxidation by using uniform supported palladium catalysts. Angew. Chem. , Int. Ed. 2018, 57, 4642–4646.

38

Hu, Q.; Cao, K.; Lang, Y.; Chen, R.; Chu, S. Q.; Jia, L. W.; Yue, J.; Shan, B. Improved NO–CO reactivity of highly dispersed Pt particles on CeO2 nanorod catalysts prepared by atomic layer deposition. Catal. Sci. Technol. 2019, 9, 2664–2672.

39

Guo, Y. L.; Gao, Y. J.; Li, X.; Zhuang, G. L.; Wang, K. C.; Zheng, Y.; Sun, D. H.; Huang, J. L.; Li, Q. B. Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2. Chem. Eng. J. 2019, 362, 41–52.

40

Li, Z. J.; Dong, X. L.; Zhang, M. Y.; Leng, L. P.; Chen, W. X.; Horton, J. H.; Wang, J.; Li, Z. J.; Wu, W. Selective hydrogenation on a highly active single-atom catalyst of palladium dispersed on ceria nanorods by defect engineering. ACS Appl. Mater. Interfaces 2020, 12, 57569–57577.

41

Li, Z. J.; Ren, Q. H.; Wang, X. X.; Chen, W. X.; Leng, L. P.; Zhang, M. Y.; Horton, J. H.; Liu, B.; Xu, Q.; Wu, W. et al. Highly active and stable palladium single-atom catalyst achieved by a thermal atomization strategy on an SBA-15 molecular sieve for semi-hydrogenation reactions. ACS Appl. Mater. Interfaces 2021, 13, 2530–2537.

42

Zhao, Y. F.; Zhou, H.; Chen, W. X.; Tong, Y. J.; Zhao, C.; Lin, Y.; Jiang, Z.; Zhang, Q. W.; Xue, Z. G.; Cheong, W. C. et al. Two-step carbothermal welding to access atomically dispersed Pd1 on three-dimensional zirconia nanonet for direct indole synthesis. J. Am. Chem. Soc. 2019, 141, 10590–10594.

43

Zhou, H.; Zhao, Y. F.; Xu, J.; Sun, H. R.; Li, Z. J.; Liu, W.; Yuan, T. W.; Liu, W.; Wang, X. Q.; Cheong, W. C. et al. Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nat. Commun. 2020, 11, 335.

44

Garvie, L. A. J.; Buseck, P. R. Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. J. Phys. Chem. Solids. 1999, 60, 1943–1947.

45

Rodriguez, J. A.; Hanson, J. C.; Kim, J. Y.; Liu, G.; Iglesias-Juez, A.; Fernández-García, M. Properties of CeO2 and Ce1–xZrxO2 nanoparticles: X-ray absorption near-edge spectroscopy, density functional, and time-resolved X-ray diffraction studies. J. Phys. Chem. B 2003, 107, 3535–3543.

46

Kang, L. Q.; Wang, B. L.; Bing, Q. M.; Zalibera, M.; Büchel, R.; Xu, R. Y.; Wang, Q. M.; Liu, Y. Y.; Gianolio, D.; Tang, C. C. et al. Adsorption and activation of molecular oxygen over atomic copper(Ⅰ/Ⅱ) site on ceria. Nat. Commun. 2020, 11, 4008.

47

Liu, Y. W.; Li, Z.; Yu, Q. Y.; Chen, Y. F.; Chai, Z. W.; Zhao, G. F.; Liu, S. J.; Cheong, W. C.; Pan, Y.; Zhang, Q. H. et al. A general strategy for fabricating isolated single metal atomic site catalysts in Y zeolite. J. Am. Chem. Soc. 2019, 141, 9305–9311.

48

Morgan, K.; Goguet, A.; Hardacre, C. Metal redispersion strategies for recycling of supported metal catalysts: A perspective. ACS Catal. 2015, 5, 3430–3445.

49

Cai, G. H.; Luo, W.; Xiao, Y. H.; Zheng, Y.; Zhong, F. L.; Zhan, Y. Y.; Jiang, L. H. Synthesis of a highly stable Pd@CeO2 catalyst for methane combustion with the synergistic effect of urea and citric acid. ACS Omega 2018, 3, 16769–16776.

50

Pachatouridou, E.; Papista, E.; Iliopoulou, E. F.; Delimitis, A.; Goula, G.; Yentekakis, I. V.; Marnellos, G. E.; Konsolakis, M. Nitrous oxide decomposition over Al2O3 supported noble metals (Pt, Pd, Ir): Effect of metal loading and feed composition. J. Environ. Chem. Eng. 2015, 3, 815–821.

51

Zhang, Q. S.; Bu, J. H.; Wang, J. D.; Sun, C. Y.; Zhao, D. Y.; Sheng, G. Z.; Xie, X. W.; Sun, M.; Yu, L. Highly efficient hydrogenation of nitrobenzene to aniline over Pt/CeO2 catalysts: The shape effect of the support and key role of additional Ce3+ sites. ACS Catal. 2020, 10, 10350–10363.

52

Lee, S. M.; Lee, Y. H.; Moon, D. H.; Ahn, J. Y.; Nguyen, D. D.; Chang, S. W.; Kim, S. S. Reaction mechanism and catalytic impact of Ni/CeO2–x catalyst for low-temperature CO2 methanation. Ind. Eng. Chem. Res. 2019, 58, 8656–8662.

53

Razzaq, R.; Zhu, H. W.; Jiang, L.; Muhammad, U.; Li, C. S.; Zhang, S. J. Catalytic methanation of CO and CO2 in coke oven gas over Ni–CO/ZrO2–CeO2. Ind. Eng. Chem. Res. 2013, 52, 2247–2256.

54

Murata, K.; Kosuge, D.; Ohyama, J.; Mahara, Y.; Yamamoto, Y.; Arai, S.; Satsuma, A. Exploiting metal–support interactions to tune the redox properties of supported Pd catalysts for methane combustion. ACS Catal. 2020, 10, 1381–1387.

55

Díaz, E.; Casas, J. A.; Mohedano, Á. F.; Calvo, L.; Gilarranz, M. A.; Rodríguez, J. J. Kinetics of the hydrodechlorination of 4-chlorophenol in water using Pd, Pt, and Rh/Al2O3 catalysts. Ind. Eng. Chem. Res. 2008, 47, 3840–3846.

56

Ma, X. X.; Liu, Y.; Li, X. Q.; Xu, J. G.; Gu, G. D.; Xia, C. H. Water: The most effective solvent for liquid-phase hydrodechlorination of chlorophenols over raney Ni catalyst. Appl. Catal. B Environ. 2015, 165, 351–359.

57

Yang, H. H.; Nie, R. F.; Xia, W.; Yu, X. L.; Jin, D. F.; Lu, X. H.; Zhou, D.; Xia, Q. H. Co embedded within biomass-derived mesoporous N-doped carbon as an acid-resistant and chemoselective catalyst for transfer hydrodeoxygenation of biomass with formic acid. Green Chem. 2017, 19, 5714–5722.

Nano Research
Pages 1338-1346
Cite this article:
Li Z, Zhang M, Zhang L, et al. Engineering the atomic interface of porous ceria nanorod with single palladium atoms for hydrodehalogenation reaction. Nano Research, 2022, 15(2): 1338-1346. https://doi.org/10.1007/s12274-021-3662-y
Topics:

713

Views

18

Crossref

19

Web of Science

20

Scopus

2

CSCD

Altmetrics

Received: 11 May 2021
Revised: 06 June 2021
Accepted: 07 June 2021
Published: 28 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return