AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High entropy spinel oxide for efficient electrochemical oxidation of ammonia

Shi He1Vasishta Somayaji1Mengdi Wang1Seung-Hoon Lee1Zhijia Geng1Siyuan Zhu1Peter Novello1Chakrapani V. Varanasi2Jie Liu1( )
Department of Chemistry, Duke University, Durham, NC 27708, USA
U.S. Army Research Office P.O. Box 12211, Research Triangle Park, NC 27709, USA
Show Author Information

Graphical Abstract

This work introduces a new family of earth-abundant transition metal high entropyoxide electrocatalysts forammonia oxidation reaction (AOR), thus heralding a newparadigm of catalyst design for enabling ammonia as an energy carrier.

Abstract

Ammonia has emerged as a promising energy carrier owing to its carbon neutral content and low expense in long-range transportation. Therefore, development of a specific pathway to release the energy stored in ammonia is therefore in urgent demand. Electrochemical oxidation provides a convenient and reliable route to attain efficient utilization of ammonia. Here, we report that the high entropy (Mn, Fe, Co, Ni, Cu)3O4 oxides can achieve high electrocatalytic activity for ammonia oxidation reaction (AOR) in non-aqueous solutions. The AOR onset overpotential of (Mn, Fe, Co, Ni, Cu)3O4 is 0.70 V, which is nearly 0.2 V lower than that of their most active single metal cation counterpart. The mass spectroscopy study reveals that (Mn, Fe, Co, Ni, Cu)3O4 preferentially oxidizes ammonia to environmentally friendly diatomic nitrogen with a Faradic efficiency of over 85%. The X-ray photoelectron spectroscopy (XPS) result indicates that the balancing metal d-band of Mn and Cu cations helps retain a long-lasting electrocatalytic activity. Overall, this work introduces a new family of earth-abundant transition metal high entropy oxide electrocatalysts for AOR, thus heralding a new paradigm of catalyst design for enabling ammonia as an energy carrier.

Electronic Supplementary Material

Download File(s)
12274_2021_3665_MOESM1_ESM.pdf (969.9 KB)

References

1

Møller, K. T.; Jensen, T. R.; Akiba, E.; Li, H. W. Hydrogen—A sustainable energy carrier. Progr. Nat. Sci.: Mater. Int. 2017, 27, 34–40.

2

Xue, M. Q.; Wang, Q.; Lin, B. L.; Tsunemi, K. Assessment of ammonia as an energy carrier from the perspective of carbon and nitrogen footprints. ACS Sustain. Chem. Eng. 2019, 7, 12494–12500.

3

Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

4

Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

5
Liu, Y. Q.; Huang, L.; Fang, Y. X.; Zhu, X. Y.; Dong, S. J. Achieving ultrahigh electrocatalytic NH3 yield rate on Fe-doped Bi2Wo6 electrocatalyst. Nano Res., in press, https://doi:org/10.1007/s12274-020-3276-9.
6

Li, S. X.; Wang, Y. Y.; Liang, J.; Xu, T.; Ma, D. W.; Liu, Q.; Li, T. S.; Xu, S. R.; Chen, G.; Asiri, A. M. et al. TiB2 thin film enabled efficient NH3 electrosynthesis at ambient conditions. Mater. Today Phys. 2021, 18, 100396.

7

Umeyama, T.; Tezuka, N.; Kawashima, F.; Seki, S.; Matano, Y.; Nakao, Y.; Shishido, T.; Nishi, M.; Hirao, K.; Lehtivuori, H. et al. Carbon nanotube wiring of donor–acceptor nanograins by self–assembly and efficient charge transport. Angew. Chem., Int. Ed. 2011, 50, 4615–4619.

8

Adli, N. M.; Zhang, H.; Mukherjee, S.; Wu, G. Review—Ammonia oxidation electrocatalysis for hydrogen generation and fuel cells. J. Electrochem. Soc. 2018, 165, J3130–J3147.

9

Siddharth, K.; Chan, Y.; Wang, L.; Shao, M. H. Ammonia electro-oxidation reaction: Recent development in mechanistic understanding and electrocatalyst design. Curr. Opin. Electrochem. 2018, 9, 151–157.

10

Katsounaros, I.; Figueiredo, M. C.; Calle-Vallejo, F.; Li, H. J.; Gewirth, A. A.; Markovic, N. M.; Koper, M. T. M. On the mechanism of the electrochemical conversion of ammonia to dinitrogen on Pt(1 0 0) in alkaline environment. J. Catal. 2018, 359, 82–91.

11

Almomani, F.; Bhosale, R.; Khraisheh, M.; Kumar, A.; Tawalbeh, M. Electrochemical oxidation of ammonia on nickel oxide nanoparticles. Int. J. Hydrogen Energy 2020, 45, 10398–10408.

12

Shih, Y. J.; Huang, Y. H.; Huang, C. P. In-situ electrochemical formation of nickel oxyhydroxide (NiOOH) on metallic nickel foam electrode for the direct oxidation of ammonia in aqueous solution. Electrochim. Acta 2018, 281, 410–419.

13

Schiffer, Z. J.; Lazouski, N.; Corbin, N.; Manthiram, K. Nature of the first electron transfer in electrochemical ammonia activation in a nonaqueous medium. J. Phys. Chem. C 2019, 123, 9713–9720.

14

He, S.; Chen, Y. F.; Wang, M. D.; Liu, K.; Novello, P.; Li, X. Q.; Zhu, S. Y.; Liu, J. Metal nitride nanosheets enable highly efficient electrochemical oxidation of ammonia. Nano Energy 2021, 80, 105528.

15

Peng, W.; Xiao, L.; Huang, B.; Zhuang, L.; Lu, J. T. Inhibition effect of surface oxygenated species on ammonia oxidation reaction. J. Phys. Chem. C 2011, 115, 23050–23056.

16

Little, D. J.; Smith III, M. R.; Hamann, T. W. Electrolysis of liquid ammonia for hydrogen generation. Energy Environ. Sci. 2015, 8, 2775–2781.

17

Goshome, K.; Yamada, T.; Miyaoka, H.; Ichikawa, T.; Kojima, Y. High compressed hydrogen production via direct electrolysis of liquid ammonia. Int. J. Hydrogen Energy 2016, 41, 14529–14534.

18

Ghosh, S.; Banerjee, P.; Nandi, P. K. Heterolytic N–H bond activation of ammonia by dinuclear [{M(μ-OMe)}2] complexes (M = Sc–V and Mn–Ni): A theoretical investigation. Comput. Theor. Chem. 2018, 1145, 44–53.

19

Robinson, T. P.; De Rosa, D. M.; Aldridge, S.; Goicoechea, J. M. E–H bond activation of ammonia and water by a geometrically constrained phosphorus (III) compound. Angew. Chem., Int. Ed. 2015, 54, 13758–13763.

20

Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 2015, 328, 36–42.

21

Bligaard, T.; Nørskov, J. K.; Dahl, S.; Matthiesen, J.; Christensen, C. H.; Sehested, J. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 2004, 224, 206–217.

22

Greeley, J. Theoretical heterogeneous catalysis: Scaling relationships and computational catalyst design. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 605–635.

23

Logadottir, A.; Rod, T. H.; Nørskov, J. K.; Hammer, B.; Dahl, S.; Jacobsen, C. J. H. The Brønsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J. Catal. 2001, 197, 229–231.

24

Wang, Z. Y.; Wang, H. F.; Hu, P. Possibility of designing catalysts beyond the traditional volcano curve: A theoretical framework for multi-phase surfaces. Chem. Sci. 2015, 6, 5703–5711.

25
Nørskov, J. K.; Studt, F.; Abild-Pedersen, F.; Bligaard, T. Energy trends in catalysis. In Fundamental Concepts in Heterogeneous Catalysis; Nørskov, J. K.; Studt, F.; Abild-Pedersen, F.; Bligaard, T., Eds.; Wiley: Hoboken, 2014; pp 85–96.https://doi.org/10.1002/9781118892114
26

Kale, M. J.; Avanesian, T.; Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014, 4, 116–128.

27

Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511.

28
Zhang, Y. High-entropy materials: A brief introduction; Springer: Singapore, 2019.https://doi.org/10.1007/978-981-13-8526-1
29

George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534.

30

Oses, C.; Toher, C.; Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 2020, 5, 295–309.

31

Zhang, R. Z.; Reece, M. J. Review of high entropy ceramics: Design, synthesis, structure and properties. J. Mater. Chem. A 2019, 7, 22148–22162.

32

Zhang, Y.; Zuo, T. T.; Tang, Z.; Gao, M. C.; Dahmen, K. A.; Liaw, P. K.; Lu, Z. P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93.

33

Sarkar, A.; Wang, Q. S.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. High-entropy oxides: Fundamental aspects and electrochemical properties. Adv. Mater. 2019, 31, 1806236.

34

Löffler, T.; Savan, A.; Garzón-Manjón, A.; Meischein, M.; Scheu, C.; Ludwig, A.; Schuhmann, W. Toward a paradigm shift in electrocatalysis using complex solid solution nanoparticles. ACS Energy Lett. 2019, 4, 1206–1214.

35

Meng, H.; Wu, X.; Ci, C.; Zhang, Q.; Li, Z. A density functional theory study of NH3 and no adsorption on the β-MnO2 (110) surface. Prog. React. Kinet. Mec. 2018, 43, 219–228.

36

Herron, J. A.; Ferrin, P.; Mavrikakis, M. Electrocatalytic oxidation of ammonia on transition-metal surfaces: A first-principles study. J. Phys. Chem. C 2015, 119, 14692–14701.

37

Chen, Q.; Wang, R.; Yu, M. H.; Zeng, Y. X.; Lu, F. Q.; Kuang, X. J.; Lu, X. H. Bifunctional iron–nickel nitride nanoparticles as flexible and robust electrode for overall water splitting. Electrochim. Acta 2017, 247, 666–673.

38

Li, M.; Jijie, R.; Barras, A.; Roussel, P.; Szunerits, S.; Boukherroub, R. NiFe layered double hydroxide electrodeposited on Ni foam coated with reduced graphene oxide for high-performance supercapacitors. Electrochim. Acta 2019, 302, 1–9.

39

Wang, D. D.; Liu, Z. J.; Du, S. Q.; Zhang, Y. Q.; Li, H.; Xiao, Z. H.; Chen, W.; Chen, R.; Wang, Y. Y.; Zou, Y. Q. et al. Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. J. Mater. Chem. A 2019, 7, 24211–24216.

40

Madhavi, J. Comparison of average crystallite size by X-ray peak broadening and Williamson–Hall and size–strain plots for VO2+ doped ZnS/CdS composite nanopowder. SN Appl. Sci. 2019, 1, 1509.

41

Xu, W.; Du, D. W.; Lan, R.; Humphreys, J.; Miller, D. N.; Walker, M.; Wu, Z. C.; Irvine, J. T. S.; Tao, S. W. Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia. Appl. Catal. B Environ. 2018, 237, 1101–1109.

42

Song, P. F.; Wang, H.; Kang, L.; Ran, B. C.; Song, H. S.; Wang, R. M. Electrochemical nitrogen reduction to ammonia at ambient conditions on nitrogen and phosphorus co-doped porous carbon. Chem. Commun. 2019, 55, 687–690.

43

Zou, R. J.; Xu, M. D.; He, S. A.; Han, X. Y.; Lin, R. J.; Cui, Z.; He, G. J.; Brett, D. J. L.; Guo, Z. X.; Hu, J. Q. et al. Cobalt nickel nitride coated by a thin carbon layer anchoring on nitrogen-doped carbon nanotube anodes for high–performance lithium-ion batteries. J. Mater. Chem. A 2018, 6, 19853–19862.

44

Naghash, A. R.; Etsell, T. H.; Xu, S. XRD and XPS study of Cu–Ni interactions on reduced copper−nickel−aluminum oxide solid solution catalysts. Chem. Mater. 2006, 18, 2480–2488.

45

Li, X.; Guan, C.; Hu, Y. T.; Wang, J. Nanoflakes of Ni–Co LDH and Bi2O3 assembled in 3D carbon fiber network for high-performance aqueous rechargeable Ni/Bi battery. ACS Appl. Mater. Interfaces 2017, 9, 26008–26015.

46

Jin, Z. Y.; Lyu, J.; Zhao, Y. L.; Li, H. L.; Chen, Z. H.; Lin, X.; Xie, G. Q.; Liu, X. J.; Kai, J. J.; Qiu, H. J. Top–down synthesis of noble metal particles on high-entropy oxide supports for electrocatalysis. Chem. Mater. 2021, 33, 1771–1780.

47

Vázquez-Olmos, A.; Redón, R.; Rodríguez-Gattorno, G.; Mata-Zamora, M. E.; Morales-Leal, F.; Fernández-Osorio, A. L.; Saniger, J. M. One-step synthesis of Mn3O4 nanoparticles: Structural and magnetic stud. J. Colloid Interface Sci. 2005, 291, 175–180.

48

Swadźba-Kwaśny, M.; Chancelier, L.; Ng, S.; Manyar, H. G.; Hardacre, C.; Nockemann, P. Facile in situ synthesis of nanofluids based on ionic liquids and copper oxide clusters and nanoparticles. Dalton Trans. 2012, 41, 219–227.

49

Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. USA 2011, 108, 937–943.

50

Yin, X. L.; Han, H. M.; Kubo, M.; Miyamoto, A. Adsorption of NH3, NO2 and NO on copper-aluminate catalyst: An ab initio density functional study. Theor. Chem. Acc. 2003, 109, 190–194.

51

Neta, P.; Huie, R. E.; Ross, A. B. J. J. o. P.; Data, C. R. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 1027–1284.

52

Xu, H. D.; Zhang, Z. H.; Liu, J. X.; Do-Thanh, C. L.; Chen, H.; Xu, S. H.; Lin, Q. J.; Jiao, Y.; Wang, J. L.; Wang, Y. et al. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 2020, 11, 3908.

Nano Research
Pages 4785-4791
Cite this article:
He S, Somayaji V, Wang M, et al. High entropy spinel oxide for efficient electrochemical oxidation of ammonia. Nano Research, 2022, 15(6): 4785-4791. https://doi.org/10.1007/s12274-021-3665-8
Topics:
Part of a topical collection:

1165

Views

39

Crossref

36

Web of Science

40

Scopus

6

CSCD

Altmetrics

Received: 04 April 2021
Revised: 04 June 2021
Accepted: 08 June 2021
Published: 01 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return