AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Intriguing one-dimensional electronic behavior in emerging two-dimensional materials

Xuan Song1Teng Zhang1Huixia Yang1Hongyan Ji1Jiatao Sun1Liwei Liu1( )Yeliang Wang1( )Hongjun Gao2
School of Information and ElectronicsMIIT Key Laboratory for Low-Dimensional Quantum Structure and DevicesBeijing Institute of TechnologyBeijing100081China
Institute of PhysicsChinese Academy of SciencesBeijing100190China
Show Author Information

Graphical Abstract

Abstract

Tomonaga–Luttinger liquid (TLL), a peculiar one-dimensional (1D) electronic behavior due to strong correlation, was first studied in 1D nanostructures and has attracted significant attention over the last several decades. With the rise of new two-dimensional (2D) quantum materials, 1D nanostructures in 2D materials have provided a new platform with a well-defined configuration at the atomic scale for studying TLL electronic behavior. In this paper, we review the recent progress of TLL electronic features in emerging 2D materials embedded with various 1D nanostructures, including island edges, domain walls, and 1D moiré patterns. Specifically, novel physical phenomena, such as 1D edge states in 2D transition metal dichalcogenides (TMDs), helical TLL in 2D topological insulators (2DTI), and chiral TLL in 2D quantum Hall systems, are described and discussed at the nanoscale. We also analyze challenges and opportunities at the frontier of this research area.

References

1

Landau, L. D.; Abrikosov, A.; Halatnikov, L. On the quantum theory of fields. Il Nuovo Cim (1955-1965) 1956, 3, 80–104.

2

Voit, J. A brief introduction to Luttinger liquids. AIP Conf. Proc. 2000, 544, 309–318.

3

Jompol, Y.; Ford, C. J. B.; Griffiths, J. P.; Farrer, I.; Jones, G. A. C.; Anderson, D.; Ritchie, D. A.; Silk, T. W.; Schofield, A. J. Probing spin-charge separation in a Tomonaga–Luttinger liquid. Science 2009, 325, 597–601.

4

Deshpande, V. V.; Bockrath, M.; Glazman, L. I.; Yacoby, A. Electron liquids and solids in one dimension. Nature 2010, 464, 209–216.

5

Tomonaga, S. I. Remarks on bloch's method of sound waves applied to many-fermion problems. Prog. Theor. Phys. 1950, 5, 544–569.

6

Luttinger, J. M. An exactly soluble model of a many-fermion system. J. Math. Phys 1963, 4, 1154–1162.

7

Mattis, D. C.; Lieb, E. H. Exact solution of a many-fermion system and its associated boson field. J. Math. Phys. 1965, 6, 304–312.

8

Schotte, K. D.; Schotte, U. Tomonaga's model and the threshold singularity of X-ray spectra of metals. Phys. Rev. 1969, 182, 479– 482.

9

Haldane, F. D. M. 'Luttinger liquid theory' of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys C: Solid State Phys. 1981, 14, 2585–2609.

10

Abrikosov, A. A.; Gorkov, L. P.; Dzyaloshinski, I. E.; Silverman, R. A.; Curtiss, C. F. Methods of quantum field theory in statistical physics (revised english edition). J. Appl. Mech. 1964, 31, 735.

11

Venkataraman, L.; Hong, Y. S.; Kim, P. Electron transport in a multichannel one-dimensional conductor: molybdenum selenide nanowires. Phys. Rev. Lett. 2006, 96, 076601.

12

Blumenstein, C.; Schäfer, J.; Mietke, S.; Meyer, S.; Dollinger, A.; Lochner, M.; Cui, X. Y.; Patthey, L.; Matzdorf, R.; Claessen, R. Atomically controlled quantum chains hosting a Tomonaga–Luttinger liquid. Nat. Phys. 2011, 7, 776–780.

13

Auslaender, O. M.; Steinberg, H.; Yacoby, A.; Tserkovnyak, Y.; Halperin, B. I.; Baldwin, K. W.; Pfeiffer, L. N.; West, K. W. Spin-charge separation and localization in one dimension. Science 2005, 308, 88–92.

14

Steinberg, H.; Barak, G.; Yacoby, A.; Pfeiffer, L. N.; West, K. W.; Halperin, B. I.; Le Hur, K. Charge fractionalization in quantum wires. Nat. Phys. 2008, 4, 116–119.

15

Steinberg, H.; Auslaender, O. M.; Yacoby, A.; Qian, J.; Fiete, G. A.; Tserkovnyak, Y.; Halperin, B. I.; Baldwin, K. W.; Pfeiffer, L. N.; West, K. W. Localization transition in a ballistic quantum wire. Phys. Rev. B 2006, 73, 113307.

16

Kim, C.; Shen, Z. X.; Motoyama, N.; Eisaki, H.; Uchida, S.; Tohyama, T.; Maekawa, S. Separation of spin and charge excitations in one-dimensional SrCuO2. Phys. Rev. B 1997, 56, 15595.

17

Kim, C.; Matsuura, A. Y.; Shen, Z. X.; Motoyama, N.; Eisaki, H.; Uchida, S.; Tohyama, T.; Maekawa, S. Observation of spin-charge separation in one-dimensional SrCuO2. Phys. Rev. Lett. 1996, 77, 4054–4057.

18

Carpentier, D.; Peça, C.; Balents, L. Momentum-resolved tunneling between luttinger liquids. Phys. Rev. B 2002, 66, 153304.

19

Jolie, W.; Murray, C.; Weiß, P. S.; Hall, J.; Portner, F.; Atodiresei, N.; Krasheninnikov, A. V.; Busse, C.; Komsa, H. P.; Rosch, A. et al. Tomonaga–Luttinger liquid in a box: Electrons confined within MoS2 mirror-twin boundaries. Phys. Rev. X 2019, 9, 011055.

20

Salomon, G.; Koepsell, J.; Vijayan, J.; Hilker, T. A.; Nespolo, J.; Pollet, L.; Bloch, I.; Gross, C. Direct observation of incommensurate magnetism in Hubbard chains. Nature 2019, 565, 56–60.

21

Pagano, G.; Mancini, M.; Cappellini, G.; Lombardi, P.; Schäfer, F.; Hu, H.; Liu, X. J.; Catani, J.; Sias, C.; Inguscio, M. et al. A one-dimensional liquid of fermions with tunable spin. Nat. Phys. 2014, 10, 198–201.

22

Kinoshita, T.; Wenger, T.; Weiss, D. S. A quantum Newton's cradle. Nature 2006, 440, 900–903.

23

Chang, A. M. Chiral Luttinger liquids at the fractional quantum Hall edge. Rev. Mod. Phys. 2003, 75, 1449–1505.

24

Yang, G. H.; Shao, Y.; Niu, J. B.; Ma, X. L.; Lu, C. Y.; Wei, W.; Chuai, X. C.; Wang, J. W.; Cao, J. C.; Huang, H. et al. Possible Luttinger liquid behavior of edge transport in monolayer transition metal dichalcogenide crystals. Nat. Commun. 2020, 11, 659.

25

Stühler, R.; Reis, F.; Müller, T.; Helbig, T.; Schwemmer, T.; Thomale, R.; Schäfer, J.; Claessen, R. Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator. Nat. Phys. 2020, 16, 47–51.

26

Agarwal, K.; Randeria, M. T.; Yazdani, A.; Sondhi, S. L.; Parameswaran, S. A. Topology- and symmetry-protected domain wall conduction in quantum Hall nematics. Phys. Rev. B 2019, 100, 165103.

27

Randeria, M. T.; Agarwal, K.; Feldman, B. E.; Ding, H.; Ji, H. W.; Cava, R. J.; Sondhi, S. L.; Parameswaran, S. A.; Yazdani, A. Interacting multi-channel topological boundary modes in a quantum Hall valley system. Nature 2019, 566, 363–367.

28

Wen, X. G. Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B 1990, 41, 12838–12844.

29

Brey, L.; Fertig, H. A. Edge states and the quantized hall effect in graphene. Phys. Rev. B 2006, 73, 195408.

30

Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615– 2622.

31

Gibertini, M.; Marzari, N. Emergence of one-dimensional wires of free carriers in transition-metal-dichalcogenide nanostructures. Nano Lett. 2015, 15, 6229–6238.

32

Lin, J. H.; Pantelides, S. T.; Zhou, W. Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer. ACS Nano 2015, 9, 5189–5197.

33

Lu, C. I.; Butler, C. J.; Huang, J. K.; Hsing, C. R.; Yang, H. H.; Chu, Y. H.; Luo, C. H.; Sun, Y. C.; Hsu, S. H.; Ouyang, K. H. et al. Graphite edge controlled registration of monolayer MoS2 crystal orientation. Appl. Phys. Lett. 2015, 106, 181904.

34

Xia, Y. P.; Wang, B.; Zhang, J. Q.; Feng, Y.; Li, B.; Ren, X. B.; Tian, H.; Xu, J. P.; Ho, W.; Xu, H. et al. Hole doping in epitaxial MoSe2 monolayer by nitrogen plasma treatment. 2D Mater. 2018, 5, 041005.

35

Ma, Y. J.; Diaz, H. C.; Avila, J.; Chen, C. Y.; Kalappattil, V.; Das, R.; Phan, M. H.; Čadež, T.; Carmelo, J. M. P.; Asensio, M. C. et al. Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary. Nat. Commun. 2017, 8, 14231.

36

Bollinger, M. V.; Lauritsen, J. V.; Jacobsen, K. W.; Nørskov, J. K.; Helveg, S.; Besenbacher, F. One-dimensional metallic edge states in MoS2. Phys. Rev. Lett. 2001, 87, 196803.

37

Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazić, P.; Gibertini, M.; Marzari, N.; Sanchez, O. L.; Kung, Y. C.; Krasnozhon, D.; Chen, M. W. et al. Large-area epitaxial monolayer MoS2. ACS Nano 2015, 9, 4611–4620.

38

Xia, Y. P.; Wang, B.; Zhang, J. Q.; Jin, Y. J.; Tian, H.; Ho, W.; Xu, H.; Jin, C. H.; Xie, M. H. Quantum confined Tomonaga–Luttinger liquid in Mo6Se6 nanowires converted from an epitaxial MoSe2 monolayer. Nano Lett. 2020, 20, 2094–2099.

39

Kennes, D. M.; Xian, L.; Claassen, M.; Rubio, A. One-dimensional flat bands in twisted bilayer germanium selenide. Nat. Commun. 2020, 11, 1124.

40

Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.

41

Li, T. X.; Wang, P. J.; Fu, H. L.; Du, L. J.; Schreiber, K. A.; Mu, X. Y.; Liu, X. X.; Sullivan, G.; Csáthy, G. A.; Lin, X. et al. Observation of a helical luttinger liquid in InAs/GaSb quantum spin hall edges. Phys. Rev. Lett. 2015, 115, 136804.

42

Strunz, J.; Wiedenmann, J.; Fleckenstein, C.; Lunczer, L.; Beugeling, W.; Müller, V. L.; Shekhar, P.; Ziani, N. T.; Shamim, S.; Kleinlein, J. et al. Interacting topological edge channels. Nat. Phys. 2020, 16, 83–88.

43

Hashisaka, M.; Hiyama, N.; Akiho, T.; Muraki, K.; Fujisawa, T. Waveform measurement of charge- and spin-density wavepackets in a chiral Tomonaga–Luttinger liquid. Nat. Phys. 2017, 13, 559–562.

44

Stone, M.; Fisher, M. P. A. Laughlin states at the edge. Int. J. Mod. Phys. B 1994, 8, 2539–2553.

45

Reis, F.; Li, G.; Dudy, L.; Bauernfeind, M.; Glass, S.; Hanke, W.; Thomale, R.; Schäfer, J.; Claessen, R. Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material. Science 2017, 357, 287–290.

46

Drozdov, I. K.; Alexandradinata, A.; Jeon, S.; Nadj-Perge, S.; Ji, H. W.; Cava, R. J.; Andrei Bernevig, B.; Yazdani, A. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 2014, 10, 664–669.

47

Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 1982, 25, 2185–2190.

48

Kamata, H.; Kumada, N.; Hashisaka, M.; Muraki, K.; Fujisawa, T. Fractionalized wave packets from an artificial Tomonaga–Luttinger liquid. Nat. Nanotechnol. 2014, 9, 177–181.

Nano Research
Pages 3810-3819
Cite this article:
Song X, Zhang T, Yang H, et al. Intriguing one-dimensional electronic behavior in emerging two-dimensional materials. Nano Research, 2021, 14(11): 3810-3819. https://doi.org/10.1007/s12274-021-3668-5
Topics:

728

Views

5

Crossref

6

Web of Science

6

Scopus

1

CSCD

Altmetrics

Received: 28 December 2020
Revised: 29 March 2021
Accepted: 09 June 2021
Published: 14 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return