Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We evaluated bismuth doped cerium oxide catalysts for the continuous synthesis of dimethyl carbonate (DMC) from methanol and carbon dioxide in the absence of a dehydrating agent. BixCe1-xOδ nanocomposites of various compositions (x = 0.06-0.24) were coated on a ceramic honeycomb and their structural and catalytic properties were examined. The incorporation of Bi species into the CeO2 lattice facilitated controlling of the surface population of oxygen vacancies, which is shown to play a crucial role in the mechanism of this reaction and is an important parameter for the design of ceria-based catalysts. The DMC production rate of the BixCe1-xOδ catalysts was found to be strongly enhanced with increasing OV concentration. The concentration of oxygen vacancies exhibited a maximum for Bi0.12Ce0.88Oδ, which afforded the highest DMC production rate. Long-term tests showed stable activity and selectivity of this catalyst over 45 h on-stream at 140 ℃ and a gas-hourly space velocity of 2,880 mL·gcat-1·h-1. In-situ modulation excitation diffuse reflection Fourier transform infrared spectroscopy and first-principle calculations indicate that the DMC synthesis occurs through reaction of a bidentate carbonate intermediate with the activated methoxy (-OCH3) species. The activation of CO2 to form the bidentate carbonate intermediate on the oxygen vacancy sites is identified as highest energy barrier in the reaction pathway and thus is likely the rate-determining step.
Souza, L. F. S.; Ferreira, P. R. R.; de Medeiros, J. L.; Alves, R. M. B.; Arauújo, O. Q. F. Production of DMC from CO2 via indirect route: Technical-economical-environmental assessment and analysis. ACS Sustain. Chem. Eng. 2014, 2, 62-69.
Albrecht, M.; Rodemerck, U.; Schneider, M.; Bröring, M.; Baabe, D.; Kondratenko, E. V. Unexpectedly efficient CO2 hydrogenation to higher hydrocarbons over non-doped Fe2O3. Appl. Catal. B: Environ. 2017, 204, 119-126.
Modak, A.; Bhanja, P.; Dutta, S.; Chowdhury, B.; Bhaumik, A. Catalytic reduction of CO2 into fuels and fine chemicals. Green Chem. 2020, 22, 4002-4033.
Wu, J. J.; Zhou, X. D. Catalytic conversion of CO2 to value added fuels: Current status, challenges, and future directions. Chin. J. Catal. 2016, 37, 999-1015.
Kuan, C.; Wang, T. F.; Chen, J. G. Hydrogenation of CO2 to methanol over CuCeTiOx catalysts. Appl. Catal. B: Environ. 2017, 206, 704-711.
Mou, S. Y.; Wu, T. W.; Xie, J. F.; Zhang, Y.; Ji, L.; Huang, H.; Wang, T.; Luo, Y. L.; Xiong, X. L.; Tang, B. et al. Boron phosphide nanoparticles: A nonmetal catalyst for high-selectivity electrochemical reduction of CO2 to CH3OH. Adv. Mater. 2019, 31, 1903499.
Zhang, Y. J.; Li, D. B.; Zhang, Y.; Cao, Y.; Zhang, S. J.; Wang, K. J.; Ding, F.; Wu, J. V-modified CuO-ZnO-ZrO2/HZSM-5 catalyst for efficient direct synthesis of DME from CO2 hydrogenation. Catal. Common. 2014, 55, 49-52.
Owen, R. E.; Plucinski, P.; Mattia, D.; Torrente-Murciano, L.; Ting, V. P.; Jones, M. D. Effect of support of Co-Na-Mo catalysts on the direct conversion of CO2 to hydrocarbons. J. CO2 Util. 2016, 16, 97-103.
Keller, N.; Rebmann, G.; Keller, V. Catalysts, mechanisms and industrial processes for the dimethylcarbonate synthesis. J. Mol. Catal A: Chem. 2010, 317, 1-18.
Marin, C. M.; Li, A.; Bhalkikar, L.; Doyle, J. E.; Zeng, X. C.; Cheung, C. L. Kinetic and mechanistic investigations of the direct synthesis of dimethyl carbonate from carbon dioxide over ceria nanorod catalysts. J. Catal. 2016, 340, 295-301.
Tundo, P.; Selva, M. The chemistry of dimethyl carbonate. Acc. Chem. Res. 2002, 35, 706-716.
Schifter, I.; González, U.; González-Macías, C. Effects of ethanol, ethyl-tert-butyl ether and dimethyl-carbonate blends with gasoline on SI engine. Fuel 2016, 183, 253-261.
Zhang, G. D.; Liu, H.; Xia, X. X.; Zhang, W. G.; Fang, J. H. Effects of dimethyl carbonate fuel additive on diesel engine performances. Proc. Inst. Mech. Eng. Part D 2005, 219, 897-903.
Liu, Q.; Wu, L. P.; Jackstell, R.; Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 2015, 6, 5933.
Chang, K.; Zhang, H. C.; Cheng, M. J.; Lu, Q. Application of ceria in CO2 conversion catalysis. ACS Catal. 2020, 10, 613-631.
Zhang, M.; Xu, Y. H.; Williams, B. L.; Xiao, M.; Wang, S. J.; Han, D. M.; Sun, L. Y.; Meng, Y. Z. Catalytic materials for direct synthesis of dimethyl carbonate (DMC) from CO2. J. Clean Prod. 2020, 279, 123344.
Santos, B. A. V.; Silva, V. M. T. M.; Loureiro, J. M.; Rodrigues, A. E. Adsorption of H2O and dimethyl carbonate at high pressure over zeolite 3A in fixed bed column. Ind. Eng. Chem. Res. 2014, 53, 2473-2483.
Bansode, A.; Urakawa, A. Continuous DMC Synthesis from CO2 and methanol over a CeO2 catalyst in a fixed bed reactor in the presence of a dehydrating agent. ACS Catal. 2014, 4, 3877-3880.
Honda, M.; Tamura, M.; Nakagawa, Y.; Nakao, K.; Suzuki, K.; Tomishige, K. Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: Scope and mechanistic studies. J. Catal. 2014, 318, 95-107.
Li, C. F.; Zhong, S. H. Study on application of membrane reactor in direct synthesis DMC from CO2 and CH3OH over Cu-KF/MgSiO catalyst. Catal. Today 2003, 82, 83-90.
Aresta, M.; Dibenedetto, A.; Pastore, C.; Cuocci, C.; Aresta, B.; Cometa, S.; de Giglio, E. Cerium(Ⅳ)oxide modification by inclusion of a hetero-atom: A strategy for producing efficient and robust nano-catalysts for methanol carboxylation. Catal. Today 2008, 137, 125-131.
Saada, R.; Kellici, S.; Heil T.; Morgan, T.; Saha, B. Greener synthesis of dimethyl carbonate using a novel ceria-zirconia oxide/graphene nanocomposite catalyst. Appl. Catal. B: Environ. 2015, 168-169: 353-362.
Shi, Q. Q.; Ping, G. C.; Wang, X. J.; Xu, H.; Li, J. M.; Cui, J. Q.; Abroshan, H.; Ding, H. J.; Li, G. CuO/TiO2 heterojunction composites: An efficient photocatalyst for selective oxidation of methanol to methyl formate. J. Mater. Chem. A 2019, 7, 2253-2260.
Chen, Y. D.; Tang, Q.; Ye, Z. B.; Li, Y.; Yang, Y.; Pu, H. Y.; Li, G. Monolithic ZnxCe1-xO2 catalysts for catalytic synthesis of dimethyl carbonate from CO2 and methanol. New J. Chem. 2020, 44, 12522-12530.
Chen, Y. D.; Wang, H.; Qin, Z. X.; Tian, S. L.; Ye, Z. B.; Ye, L.; Abroshan, H.; Li, G. TixCe1-xO2 nanocomposites: A monolithic catalyst for the direct conversion of carbon dioxide and methanol to dimethyl carbonate. Green Chem. 2019, 21, 4642-4649.
Chen, Y. D.; Yang, Y.; Tian, S. L.; Ye, Z. B.; Tang, Q.; Ye, L.; Li, G. Highly effective synthesis of dimethyl carbonate over CuNi alloy nanoparticles @porous organic polymers composite. Appl. Catal. A: Gen. 2019, 587, 117275.
Tomašić, V.; Jović, F. State-of-the-art in the monolithic catalysts/ reactors. Appl. Catal. A: Gen. 2006, 311, 112-121.
Jiang, D.; Wang, W. Z.; Gao, E. P.; Zhang, L.; Sun, S. M. Bismuth-induced integration of solar energy conversion with synergistic low-temperature catalysis in Ce1-xBixO2−δ nanorods. J. Phys. Chem. C 2013, 117, 24242-24249.
Andanson, J. M.; Baiker, A. Exploring catalytic solid/liquid interfaces by in situ attenuated total reflection infrared spectroscopy. Chem. Soc. Rev. 2010, 39, 4571-4584.
Urakawa, A.; Bürgi, T.; Baiker, A. Sensitivity enhancement and dynamic behavior analysis by modulation excitation spectroscopy: Principle and application in heterogeneous catalysis. Chem. Eng. Sci. 2008, 63, 4902-4909.
Blöchl, P. E. Projector Augmented-Wave method. Phys. Rev. B 1994, 50, 17953-17979.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
Ganduglia-Pirovano, M. V.; da Silva, J. L. F.; Sauer, J. Density-functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO2(111). Phys. Rev. Lett. 2009, 102, 026101.
Li, H. Y.; Wang, H. F.; Gong, X. Q.; Guo, Y. L.; Guo, Y.; Lu, G. Z.; Hu, P. Multiple configurations of the two excess 4f electrons on defective CeO2(111): Origin and implications. Phys. Rev. B 2009, 79, 193401.
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-9904.
Chen, A. L.; Zhou, Y.; Ta, N.; Li, Y.; Shen, W. J. Redox properties and catalytic performance of ceria-zirconia nanorods. Catal. Sci. Technol. 2015, 5, 4184-4192.
Wang, Z. Q.; Zhang, M. J.; Hu, X. B.; Dravid, V. P.; Xu, Z. N.; Guo, G. C. CeO2-x quantum dots with massive oxygen vacancies as efficient catalysts for the synthesis of dimethyl carbonate. Chem. Commun. 2020, 56, 403-406.
Santra, C.; Auroux, A.; Chowdhury, B. Bi doped CeO2 oxide supported gold nanoparticle catalysts for the aerobic oxidation of alcohols. RSC Adv. 2016, 6, 45330-45342.
Shi, Q. Q.; Qin, Z. X.; Yu, C. L.; Waheed, A.; Xu, H.; Gao, Y.; Abroshan, H.; Li, G. Experimental and mechanistic understanding of photo-oxidation of methanol catalyzed by CuO/TiO2-spindle nanocomposite: Oxygen vacancy engineering. Nano Res. 2020, 13, 939-946.
Zheng, J. H.; Jiang, Q.; Lian, J. S. Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method. Appl. Surf. Sci. 2011, 257, 5083-5087.
Zhang, X. Y.; Qin, J. Q.; Xue, Y. N.; Yu, P. F.; Zhang, B.; Wang, L. M.; Liu, R. P. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 2014, 4, 4596.
Li, M. M.; Wang, P. F.; Ji, Z. Z.; Zhou, Z. R.; Xia, Y. G.; Li, Y.; Zhan, S. H. Efficient photocatalytic oxygen activation by oxygen-vacancy-rich CeO2-based heterojunctions: Synergistic effect of photoexcited electrons transfer and oxygen chemisorption. Appl. Catal. B: Environ. 2021, 289, 120020.
Shi, Y. Y.; Tian, S. L.; Shi, Q. Q.; Zhang, Y. F.; Waheed, A.; Cao, Y.; Li, G. Cascade aldol condensation of an aldehyde via the aerobic oxidation of ethanol over an Au/NiO composite. Nanoscale Adv. 2019, 1, 3654-3659.
Liu, B.; Li, C. M.; Zhang, G. Q.; Yao, X. S.; Chuang, S. S. C.; Li, Z. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods. ACS Catal. 2018, 8, 10446-10456.
Turek, A. M.; Wachs, I. E.; DeCanio, E. Acidic properties of alumina-supported metal oxide catalysts: An infrared spectroscopy study. J. Phys. Chem. 1992, 96, 5000-5007.
di Cosimo, J. I.; Díez, V. K.; Xu, M.; Iglesia, E.; Apesteguia, C. R. Structure and surface and catalytic properties of Mg-Al basic oxides. J. Catal. 1998, 178, 499-510.
Baumgarten, E.; Zachos. A. Infrared spectroscopical investigations on the adsorption of CO2 on aluminas and silica aluminas at elevated temperatures. Spectrochim. Acta A 1981, 37, 93-98.
Dreyer, J. A. H.; Li, P. X.; Zhang, L. H.; Beh, G. K.; Zhang, R. D.; Sit, P. H. L.; Teoh, W. Y. Influence of the oxide support reducibility on the CO2 methanation over Ru-based catalysts. Appl. Catal. B: Environ. 2017, 219, 715-726.
Jung, K. T.; Bell, A. T. An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia. J. Catal. 2001, 204. 339-347.
905
Views
76
Downloads
64
Crossref
60
Web of Science
63
Scopus
1
CSCD
Altmetrics
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.