AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Moisture-preventing MAPbI3 solar cells with high photovoltaic performance via multiple ligand engineering

Xin Li1Jinyue Du1Hui Duan1Haoyan Wang1Lin Fan1,2,3Yunfei Sun1,2,3Yingrui Sui1,2,3Jinghai Yang1,2,3( )Fengyou Wang1,2,3( )Lili Yang1,2,3( )
Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education Jilin Normal University Changchun 130103 China
National Demonstration Center for Experimental Physics Education Jilin Normal University Siping 136000 China
Key Laboratory of Preparation and Application of Environmental Friendly Materials Ministry of Education Jilin Normal University Changchun 130103 China
Show Author Information

Graphical Abstract

Abstract

Perovskite solar cells present one of the most prominent photovoltaic technologies, yet their stability, and engineering at the molecular level remain challenging. We have demonstrated multifunctional molecules to improve the operating stability of perovskite solar cells while depicting a high-power conversion efficiency. The multifunctional molecule 4-[(trifluoromethyl) sulphanyl]-aniline (4TA) with trifluoromethyl (-CF3) and aniline (-NH2) moieties is meticulously designed to modulate the perovskite. The -CF3 and -NH2 functional groups have strong interaction with perovskite to suppress surface defects to improve device stability, as well as obtain large crystal grains through delaying crystallization. Moreover, this -CF3 forms a hydrophobic barrier on the surface of the perovskite to prevent cell decomposition. Consequently, the performance of the perovskite solar cells is remarkably improved with the efficiency increased from 18.00% to 20.24%. The perovskite solar cells with multifunctional molecular maintaining 93% of their original efficiency for over 30 days (~ 55% humidity) in air without device encapsulation, exhibiting a high long-term stability. Moreover, the lead leakage issue of perovskite solar cells has also been suppressed by the built-in 4TA molecule, which is beneficial to environment-friendly application. Ultimately, we believe this multifunctional small molecule provides an available way to achieve high performance perovskite solar cells and the related design strategy is helpful to further develop more versatile materials for perovskite-based optoelectronic devices.

Electronic Supplementary Material

Download File(s)
12274_2021_3673_MOESM1_ESM.pdf (1.8 MB)

References

1

He, J. J.; Liu, J. X.; Hou, Y.; Wang, Y.; Yang, S.; Yang, H. G. Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells. Nat. Commun. 2020, 11, 4237.

2

Ren, H.; Yu, S. D.; Chao, L. F.; Xia, Y. D.; Sun, Y. H.; Zuo, S. W.; Li, F.; Niu, T. T.; Yang, Y. G.; Ju, H. X. et al. Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photonics 2020, 14, 154–163.

3

Huang, D.; Goh, T.; Zheng, Y. F.; Qin, Z. L.; Zhao, J.; Zhao, S. L.; Xu, Z.; Taylor, A. D. An additive dripping technique using diphenyl ether for tuning perovskite crystallization for high-efficiency solar cells. Nano Res. 2018, 11, 2648–2657.

4

Cao, J.; Tao, S. X.; Bobbert, P. A.; Wong, C. P.; Zhao, N. Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration. Adv. Mater. 2018, 30, 1707350.

5

Reichert, S.; An, Q. Z.; Woo, Y. W.; Walsh, A.; Vaynzof, Y.; Deibel, C. Probing the ionic defect landscape in halide perovskite solar cells. Nat. Commun. 2020, 11, 6098.

6

Jiang, J. X.; Wang, Q.; Jin, Z. W.; Zhang, X. S.; Lei, J.; Bin, H. J.; Zhang, Z. G.; Li, Y. F.; Liu, S. Z. F. Polymer doping for high-efficiency perovskite solar cells with improved moisture stability. Adv. Energy Mater. 2018, 8, 1701757.

7

Xu, H. F.; Liu, G. Z.; Xu, X. X.; Xu, S. D.; Zhang, L. Y.; Chen, X. J.; Zheng, H. Y.; Pan, X. Hydrophobic 2D perovskite-modified layer with polyfunctional groups for enhanced performance and high moisture stability of perovskite solar cells. Sol. RRL 2020, 4, 2000647.

8

Li, C. W.; Song, Z. N.; Chen, C.; Xiao, C. X.; Subedi, B.; Harvey, S. P.; Shrestha, N.; Subedi, K. K.; Chen, L.; Liu, D. C. et al. Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nat. Energy 2020, 5, 768–776.

9

Najeeb, M. A.; Ahmad, Z.; Shakoor, R. A.; Alashraf, A.; Bhadra, J.; Al-Thani, N. J.; Al-Muhtaseb, S. A.; Mohamed, A. M. A. Growth of MAPbBr3 perovskite crystals and its interfacial properties with Al and Ag contacts for perovskite solar cells. Opt. Mater. 2017, 73, 50–55.

10

Jiang, M. C.; Yuan, J. F.; Cao, G. Z.; Tian, J. J. In-situ fabrication of P3HT passivating layer with hole extraction ability for enhanced performance of perovskite solar cell. Chem. Eng. J. 2020, 402, 126152.

11

Laskar, A. R.; Luo, W. Q.; Ghimire, N.; Chowdhury, A. H.; Bahrami, B.; Gurung, A.; Reza, K. M.; Pathak, R.; Bobba, R. S.; Lamsal, B. S. et al. Phenylhydrazinium iodide for surface passivation and defects suppression in perovskite solar cells. Adv. Funct. Mater. 2020, 30, 2000778.

12

Arias-Ramos, C. F.; Kumar, Y.; Abrego-Martínez, P. G.; Hu, H. L. Efficient and stable hybrid perovskite prepared at 60% relative humidity with a hydrophobic additive in anti-solvent. Sol. Energy Mater. Sol. Cells 2020, 215, 110625.

13

Kim, B.; Seok, S. I. Molecular aspects of organic cations affecting the humidity stability of perovskites. Energy Environ. Sci. 2020, 13, 805–820.

14

Park, Y.; Jana, A.; Myung, C. W.; Yoon, T.; Lee, G.; Kocher, C. C.; Ying, G. H.; Osokin, V.; Taylor, R. A.; Kim, K. S. Enhanced photoluminescence quantum yield of MAPbBr3 nanocrystals by passivation using graphene. Nano Res. 2020, 13, 932–938.

15

Hartono, N. T. P.; Thapa, J.; Tiihonen, A.; Oviedo, F.; Batali, C.; Yoo, J. J.; Liu, Z.; Li, R. P.; Marrón, D. F.; Bawendi, M. G. et al. How machine learning can help select capping layers to suppress perovskite degradation. Nat. Commun. 2020, 11, 4172.

16

Mahmud, A.; Duong, T.; Yin, Y. T.; Pham, H. T.; Walter, D.; Peng, J.; Wu, Y. L.; Li, L.; Shen, H. P.; Wu, N. D. et al. Double-sided surface passivation of 3D perovskite film for high-efficiency mixed-dimensional perovskite solar cells. Adv. Funct. Mater. 2020, 30, 1907962.

17

Wang, B. X.; Wu, F.; Bi, S. Q.; Zhou, J. Y.; Wang, J. Q.; Leng, X. Y.; Zhang, D. Y.; Meng, R.; Xue, B. D.; Zong, C. Z. et al. A polyaspartic acid sodium interfacial layer enhances surface trap passivation in perovskite solar cells. J. Mater. Chem. A 2019, 7, 23895–23903.

18

Frolova, L. A.; Davlethanov, A. I.; Dremova, N. N.; Zhidkov, I.; Akbulatov, A. F.; Kurmaev, E. Z.; Aldoshin, S. M.; Stevenson, K. J.; Troshin, P. A. Efficient and stable MAPbI3-based perovskite solar cells using polyvinylcarbazole passivation. J. Phys. Chem. Lett. 2020, 11, 6772–6778.

19

Song, D. D.; Wei, D.; Cui, P.; Li, M. C.; Duan, Z. Q.; Wang, T. Y.; Ji, J.; Li, Y. Y.; Mbengue, J. M.; Li, Y. F. et al. Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells. J. Mater. Chem. A 2016, 4, 6091–6097.

20

Shao, Y. C.; Xiao, Z. G.; Bi, C.; Yuan, Y. B.; Huang, J. S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784.

21

Zhang, K.; Wang, Z.; Wang, G. P.; Wang, J.; Li, Y.; Qian, W.; Zheng, S. Z.; Xiao, S.; Yang, S. H. A prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformity. Nat. Commun. 2020, 11, 1006.

22

Guo, P. F.; Ye, Q.; Liu, C.; Cao, F. R.; Yang, X. K.; Ye, L. F.; Zhao, W. H.; Wang, H. Y.; Li, L.; Wang, H. Q. Double barriers for moisture degradation: Assembly of hydrolysable hydrophobic molecules for stable perovskite solar cells with high open-circuit voltage. Adv. Funct. Mater. 2020, 30, 2002639.

23

Wang, S. J.; Li, Z.; Zhang, Y. Y.; Liu, X. R.; Han, J.; Li, X. H.; Liu, Z. K.; Liu, S. Z.; Choy, W. C. H. Water-soluble triazolium ionic-liquid-induced surface self-assembly to enhance the stability and efficiency of perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1900417.

24

Zhao, S.; Zhao, B. H.; Chen, Y. L.; Yang, G. W.; Li, X. Y. Enhanced performance and stability of planar perovskite solar cells by interfacial engineering using fluorinated aliphatic amines. ACS Appl. Energy Mater. 2019, 2, 6230–6236.

25

Yang, S.; Wang, Y.; Liu, P. R.; Cheng, Y. B.; Zhao, H. J.; Yang, H. G. Functionalization of perovskite thin films with moisture-tolerant molecules. Nat. Energy 2016, 1, 15016.

26

Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D'Haen, J.; D'Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 2015, 5, 1500477.

27

Zhu, K. P.; Cong, S.; Lu, Z.; Lou, Y. H.; He, L.; Li, J. M.; Ding, J. N.; Yuang, N.; Rümmeli, M. H.; Zou, G. F. Enhanced perovskite solar cell performance via defect passivation with ethylamine alcohol chlorides additive. J. Power Sources 2019, 428, 82–87.

28

Wang, D.; Huang, L.; Chen, Q. Y.; Hu, L. Y.; Zeng, F.; Zhou, X. Y.; Zhang, L. Z.; Liu, C.; Wang, X. Z.; Yan, L. et al. A dual function-enabled novel zwitterion to stabilize a Pb-Ⅰ framework and passivate defects for highly efficient inverted planar perovskite solar cells. Chem. Commun. 2020, 56, 6929–6932.

29

Jiang, H.; Yan, Z.; Zhao, H.; Yuan, S. H.; Yang, Z.; Li, J.; Liu, B.; Niu, T. Q.; Feng, J. S.; Wang, Q. et al. Bifunctional hydroxylamine hydrochloride incorporated perovskite films for efficient and stable planar perovskite solar cells. ACS Appl. Energy Mater. 2018, 1, 900–909.

30

Son, D. Y.; Kim, S. G.; Seo, J. Y.; Lee, S. H.; Shin, H.; Lee, D.; Park, N. G. Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 2018, 140, 1358–1364.

31

Wu, Z. F.; Jiang, M. W.; Liu, Z. H.; Jamshaid, A.; Ono, L. K.; Qi, Y. B. Highly efficient perovskite solar cells enabled by multiple ligand passivation. Adv. Energy Mater. 2020, 10, 1903696.

32

Yang, S.; Dai, J.; Yu, Z. H.; Shao, Y. C.; Zhou, Y.; Xiao, X.; Zeng, X. C.; Huang, J. S. Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 2019, 141, 5781–5787.

33

Dong, H.; Xi, J.; Zuo, L. J.; Li, J. R.; Yang, Y. G.; Wang, D. D.; Yu, Y.; Ma, L.; Ran, C. X.; Gao, W. Y. et al. Conjugated molecules "bridge": Functional ligand toward highly efficient and long-term stable perovskite solar cell. Adv. Funct. Mater. 2019, 29, 1808119.

34

Li, X.; Chen, C. C.; Cai, M. L.; Hua, X.; Xie, F. X.; Liu, X.; Hua, J. L.; Long, Y. T.; Tian, H.; Han, L. Y. Efficient passivation of hybrid perovskite solar cells using organic dyes with-COOH functional group. Adv. Energy Mater. 2018, 8, 1800715.

35

Biffinger, J. C.; Kim, H. W.; DiMagno, S. G. The polar hydrophobicity of fluorinated compounds. ChemBioChem 2004, 5, 622–627.

36

Xiong, H.; Rui, Y. C.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Hydrophobic coating over a CH3NH3PbI3 absorbing layer towards air stable perovskite solar cells. J. Mater. Chem. C. 2016, 4, 6848–6854.

37

Fu, S.; Li, X. D.; Wan, L.; Wu, Y. L.; Zhang, W. X.; Wang, Y. M.; Bao, Q. Y.; Fang, J. F. Efficient passivation with lead pyridine-2-carboxylic for high-performance and stable perovskite solar cells. Adv. Energy Mater. 2019, 9, 1901852.

38

Li, N. X.; Tao, S. X.; Chen, Y. H.; Niu, X. X.; Onwudinanti, C. K.; Hu, C.; Qiu, Z. W.; Xu, Z. Q.; Zheng, G. H. J.; Wang, L. G. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 2019, 4, 408–415.

39

Zhang, L. Q.; Cao, K.; Qian, J.; Huang, Y.; Wang, X. X.; Ge, M. R.; Shen, W.; Huang, F.; Wang, M. H.; Zhang, W. Z. et al. Crystallization control and multisite passivation of perovskites with amino acid to boost the efficiency and stability of perovskite solar cells. J. Mater. Chem. C 2020, 8, 17482–17490.

40

Tian, J. J.; Wang, J.; Xue, Q. F.; Niu, T. Q.; Yan, L.; Zhu, Z. L.; Li, N.; Brabec, C. J.; Yip, H. L.; Cao, Y. Composition engineering of all-inorganic perovskite film for efficient and operationally stable solar cells. Adv. Funct. Mater. 2020, 30, 2001764.

Nano Research
Pages 1375-1382
Cite this article:
Li X, Du J, Duan H, et al. Moisture-preventing MAPbI3 solar cells with high photovoltaic performance via multiple ligand engineering. Nano Research, 2022, 15(2): 1375-1382. https://doi.org/10.1007/s12274-021-3673-8
Topics:

786

Views

32

Crossref

31

Web of Science

31

Scopus

2

CSCD

Altmetrics

Received: 28 April 2021
Revised: 03 June 2021
Accepted: 10 June 2021
Published: 03 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return