Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Hydrophobic 1-octadecanethiol functionalized copper catalyst promotes robust high-current CO2 gas-diffusion electrolysis

Liangyao Xue1Xuefeng Wu1Yuanwei Liu1Beibei Xu2Xuelu Wang2Sheng Dai3()Pengfei Liu1()Huagui Yang1()
Key Laboratory for Ultrafine Materials of Ministry of Education Shanghai Engineering Research Center of Hierarchical Nanomaterials School of Materials Science and EngineeringEast China University of Science and Technology hanghai 200237 China
Physics Department and Shanghai Key Laboratory of Magnetic Resonance School of Physics and Materials Science East China Normal University Shanghai 200062 China
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center Institute of Fine Chemicals School of Chemistry and Molecular EngineeringEast China University of Science and Technology, 130 Meilong Road Shanghai 200237 China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

The electrocatalytic reduction of CO2 presents a promising strategy in addressing environmental and energy crisis. Significant progress has been achieved via CO2 gas diffusion electrolysis, to react at high selectivity and high rate. However, the gas diffusion layer (GDL) of the gas diffusion electrode (GDE) still suffers from low tolerance and limited active sites. Here, the hydrophobic 1-octadecanethiol molecular was functionalized over the Cu catalyst layer of the GDE, which simultaneously stabilizes the GDL and exposes abundant active solid–liquid–gas three-phase interfaces. The resultant GDE exhibits multi-carbon (C2+) product selectivity over faradaic efficiency (FE) of 70.0% in the range of 100 to 800 mA·cm-2, with the peak FEC2+ of 85.2% at 800 mA·cm-2. Notably, the strengthened GDE could continuously drive high-current electrolysis for more than 100 h without flooding. This work opens a new way to improve CO2 gas diffusion electrolysis via surface molecular engineering.

Electronic Supplementary Material

Download File(s)
12274_2021_3675_MOESM1_ESM.pdf (3 MB)

References

1

Zheng, Y.; Vasileff, A.; Zhou, X. L.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7676-7659.

2

Fan, L.; Xia, C.; Yang, F. Q.; Wang, J.; Wang, H. T.; Lu, Y. Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 2020, 6, eaay3111.

3

Zhong, H. X.; Meng, F. L.; Zhang, Q.; Liu, K. H.; Zhang, X. B. Highly efficient and selective CO2 electro-reduction with atomic Fe-C-N hybrid coordination on porous carbon nematosphere. Nano Res. 2019, 12, 2318-2323.

4

De Luna, P.; Quintero-Bermudez, R.; Dinh, C. T.; Ross, M. B.; Bushuyev, O. S.; Todorović, P.; Regier, T.; Kelley, S. O.; Yang, P. D.; Sargent, E. H. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 2018, 1, 103-110.

5

Cai, Z.; Zhang, Y. S.; Zhao, Y. X.; Wu, Y. S.; Xu, W. W; Wen, X. M.; Zhong, Y.; Zhang, Y.; Liu, W.; Wang, H. L. et al. Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Res. 2019, 12, 345-349.

6

Lee, S. Y.; Jung, H.; Kim, N. K.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J. Am. Chem. Soc. 2018, 140, 8681-8689.

7

Lum, Y.; Ager, J. W. Stability of residual oxides in oxide-derived copper catalysts for electrochemical CO2 reduction investigated with 18O labeling. Angew. Chem., Int. Ed. 2018, 130, 560-563.

8

Tang, C.; Shi, J. J.; Bai, X. W.; Hu, A. Q.; Xuan, N. N.; Yue, Y. W.; Ye, T.; Liu, B.; Li, P. X.; Zhuang, P. Y. et al. CO2 reduction on copper's twin boundary. ACS Catal. 2020, 10, 2026-2032.

9

Yang, Y.; Luo, M. C.; Zhang, W. Y.; Sun, Y. J.; Chen, X.; Guo, S. J. Metal surface and interface energy electrocatalysis: Fundamentals, performance engineering, and opportunities. Chem 2018, 4, 2054-2083.

10

Wang, W.; Shang, L.; Chang, G. J.; Yan, C. Y.; Shi, R.; Zhao, Y. X.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R. Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide. Adv. Mater. 2019, 31, 1808276.

11

Higgins, D.; Hahn, C.; Xiang, C. X.; Jaramillo, T. F.; Weber, A. Z. Gas-diffusion electrodes for carbon dioxide reduction: A new paradigm. ACS Energy Lett. 2019, 4, 317-324.

12

Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 2019, 18, 1222-1227.

13

Ren, W. H.; Zhao, C. Paths towards enhanced electrochemical CO2 reduction. Nat. Sci. Rev. 2020, 7, 7-9.

14

Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A. X.; Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 2018, 51, 910-918.

15

Lu, X.; Zhu, C. Q.; Wu, Z. S.; Xuan, J.; Francisco, J. S.; Wang, H. L. In situ observation of the pH gradient near the gas diffusion electrode of CO2 reduction in alkaline electrolyte. J. Am. Chem. Soc. 2020, 142, 15438-15444.

16

Yang, K. L.; Kas, R.; Smith, W. A.; Burdyny, T. Role of the carbon-based gas diffusion layer on flooding in a gas diffusion electrode cell for electrochemical CO2 reduction. ACS Energy Lett. 2021, 6, 33-40.

17

Forner-Cuenca, A.; Biesdorf, J.; Gubler, L.; Kristiansen, P. M.; Schmidt, T. J.; Boillat, P. Engineered water highways in fuel cells: Radiation grafting of gas diffusion layers. Adv. Mater. 2015, 27, 6317-6322.

18

Jeanty, P.; Scherer, C.; Magori, E.; Wiesner-Fleischer, K.; Hinrichsen, O.; Fleischer, M. Upscaling and continuous operation of electrochemical CO2 to CO conversion in aqueous solutions on silver gas diffusion electrodes. J. CO2 Util. 2018, 24, 454-462.

19

De Mot, B.; Hereijgers, J.; Duarte, M.; Breugelmans, T. Influence of flow and pressure distribution inside a gas diffusion electrode on the performance of a flow-by CO2 electrolyzer. Chem. Eng. J. 2019, 378, 122224.

20

Leonard, M. E.; Clarke, L. E.; Forner-Cuenca, A.; Brown, S. M.; Brushett, F. R. Investigating electrode flooding in a flowing electrolyte, gas-fed carbon dioxide electrolyzer. ChemSusChem 2020, 13, 400-411.

21

Shi, R.; Guo, J. H.; Zhang, X. R.; Waterhouse, G. I. N.; Han, Z. J.; Zhao, Y. X.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T. R. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 2020, 11, 3028.

22

Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; de Arquer, F. P. G.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783-787.

23

Xing, Z.; Hu, L.; Ripatti, D. S.; Hu, X.; Feng, X. F. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 2021, 12, 136.

24

Wicks, J.; Jue, M. L.; Beck, V. A.; Oakdale, J. S.; Dudukovic, N. A.; Clemens, A. L.; Liang, S. W.; Ellis, M. E.; Lee, G.; Baker, S. E. et al. 3D-printable fluoropolymer gas diffusion layers for CO2 electroreduction. Adv. Mater. 2021, 33, 2003855.

25

Ma, W. C.; Xie, S. J.; Liu, T. T.; Fan, Q. Y.; Ye, J. Y.; Sun, F. F.; Jiang, Z.; Zhang, Q. H.; Cheng, J.; Wang, Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478-487.

26

Yang, W. J.; Li, T. Q.; Zhou, H. H.; Huang, Z.; Fu, C. P.; Chen, L.; Li, M. B.; Kuang, Y. F. Electrochemical and anti-corrosion properties of octadecanethiol and benzotriazole binary self-assembled monolayers on copper. Electrochim. Acta 2016, 220, 245-251.

27

Zhao, H. Y.; Jin, J.; Tian, W. J.; Li, R.; Yu, Z.; Song, W.; Cong, Q.; Zhao, B.; Ozaki, Y. Three-dimensional superhydrophobic surface-enhanced Raman spectroscopy substrate for sensitive detection of pollutants in real environments. J. Mater. Chem. A 2015, 3, 4330-4337.

28

Ying, T. An advanced anti-tarnish process for silver coins and silverware—monomolecular octadecanethiol protective film. Tribol. Trans. 2021, 64, 341-349.

29

Tetzner, K.; Schroder, K. A.; Bock, K. Photonic curing of sol-gel derived HfO2 dielectrics for organic field-effect transistors. Ceram. Int. 2014, 40, 15753-15761.

30

Liu, J. H.; Yang, L. M.; Ganz, E. Electrochemical reduction of CO2 by single atom catalyst TM-TCNQ monolayers. J. Mater. Chem. A 2019, 7, 3805-3814.

31

Shinagawa, T.; Larrazábal, G. O.; Martín, A. J.; Krumeich, F.; Pérez-Ramírez, J. Sulfur-modified copper catalysts for the electrochemical reduction of carbon dioxide to formate. ACS Catal. 2018, 8, 837-844.

32

Ahn, S.; Klyukin, K.; Wakeham, R. J.; Rudd, J. A.; Lewis, A. R.; Alexander, S.; Carla, F.; Alexandrov, V.; Andreoli, E. Poly-amide modified copper foam electrodes for enhanced electrochemical reduction of carbon dioxide. ACS Catal. 2018, 8, 4132-4142.

33

Wei, X.; Yin, Z. L.; Lyu, K. J.; Li, Z.; Gong, J.; Wang, G. W.; Xiao, L.; Lu, J. T.; Zhuang, L. Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS Catal. 2020, 10, 4103-4111.

34

Zhu, M. H.; Chen, J. C.; Huang, L. B.; Ye, R. Q.; Xu, J.; Han, Y. F. Covalently grafting cobalt porphyrin onto carbon nanotubes for efficient CO2 electroreduction. Angew. Chem., Int. Ed. 2019, 131, 6667-66671.

35

Peykov, V.; Quinn, A.; Ralston, J. Electrowetting: A model for contact-angle saturation. Colloid Polym. Sci. 2000, 278, 789-793.

36

L we, A.; Rieg, C.; Hierlemann, T.; Salas, N.; Kopljar, D.; Wagner, N.; Klemm, E. Influence of temperature on the performance of gas diffusion electrodes in the CO2 reduction reaction. ChemElectroChem 2019, 6, 4497-4506.

37

Zhong, M.; Tran, K.; Min, Y. M.; Wang, C. H.; Wang, Z. Y.; Dinh, C. T.; De Luna, P.; Yu, Z. Q.; Rasouli, A. S.; Brodersen, P. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020, 581, 178-183.

Nano Research
Pages 1393-1398
Cite this article:
Xue L, Wu X, Liu Y, et al. Hydrophobic 1-octadecanethiol functionalized copper catalyst promotes robust high-current CO2 gas-diffusion electrolysis. Nano Research, 2022, 15(2): 1393-1398. https://doi.org/10.1007/s12274-021-3675-6
Topics:
Metrics & Citations  
Article History
Copyright
Return