AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies

Dongzheng Wu1Yichao Zhuang1Fei Wang1Yang Yang2( )Jing Zeng1( )Jinbao Zhao1( )
College of Chemistry and Chemical Engineering, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technology, Ministry of Education, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
Show Author Information

Graphical Abstract

In this work, we propose a binder-free and honeycomb-like V2O5−X electrode on Ti foil with rich oxygen vacancies for rechargeable magnesium batteries (RMBs). Benefitting from the unique structure, the as-prepared Ti-V2O5−X electrode presents the improved discharge specific capacity, cycling performance, and rate performance.

Abstract

Rechargeable magnesium batteries (RMBs) have emerged as a promising next-generation electrochemical energy storage technology due to their superiority of low price and high safety. However, the practical applications of RMBs are severely limited by immature electrode materials. Especially, the high-rate cathode materials are highly desired. Herein, we propose a dual-functional design of V2O5 electrode with rational honeycomb-like structure and rich oxygen vacancies to enhance the kinetics synergistically. The result demonstrates that oxygen vacancies can not only boost the intrinsic electronic conductivity of V2O5, but also enhance the Mg2+ diffusion kinetics inside the cathode, leading to the good high-rate performance. Moreover, ex-situ X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) characterizations reveal that Mg2+ is mainly intercalated from the (101) plane of V2O5−X based on the insertion-type electrochemical mechanism; meanwhile, the highly reversible structure evolution during Mg2+ insertion/extraction is also verified. This work proposes that the dual-functional design of electrode has a great influence in enhancing the electrochemical performance of cathode materials for RMBs.

Electronic Supplementary Material

Download File(s)
12274_2021_3679_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Armand, M.; Tarascon, J. M. Building better batteries. Building better batteries. Nature 2008, 451, 652–657.

[2]

Huang, P. F.; Zhang, S. L.; Ying, H. J.; Yang, W. T.; Wang, J. L.; Guo, R. N.; Han, W. Q. Fabrication of Fe nanocomplex pillared few-layered Ti3C2Tx MXene with enhanced rate performance for lithium-ion batteries. Nano Res. 2021, 14, 1218–1227.

[3]

Sheng, Q. Q.; Li, Q.; Xiang, L. X.; Huang, T.; Mai, Y.; Han, L. Double diamond structured bicontinuous mesoporous titania templated by a block copolymer for anode material of lithium-ion battery. Nano Res. 2021, 14, 992–997.

[4]

Nguyen, D. T.; Eng, A. Y. S.; Ng, M. F.; Kumar, V.; Sofer, Z.; Handoko, A. D.; Subramanian, G. S.; Seh, Z. W. A high-performance magnesium triflate-based electrolyte for rechargeable magnesium batteries. Cell Rep. Phys. Sci. 2020, 1, 100265.

[5]

Nguyen, D. T.; Horia, R.; Eng, A. Y. S.; Song, S. W.; Seh, Z. W. Material design strategies to improve the performance of rechargeable magnesium–sulfur batteries. Mater. Horiz. 2021, 8, 830–853.

[6]
Regulacio, M. D.; Nguyen, D. T.; Horia, R.; Seh, Z. W. Designing nanostructured metal chalcogenides as cathode materials for rechargeable magnesium batteries. Small, in press, DOI: 10.1002/smll.202007683.
[7]

Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Kong, W. H.; Lin, H. N.; Wang, L.; Jin, Z. One-step synthesis of 2-ethylhexylamine pillared vanadium disulfide nanoflowers with ultralarge interlayer spacing for high-performance magnesium storage. Adv. Energy Mater. 2019, 9, 1900145.

[8]

Pei, C. Y.; Jin, M. D.; Yin, Y. M.; Xiong, F. Y.; Jiang, Y. L.; Yuan, X. F.; Wang, F.; An, Q. Y. Intercalation-type V2O3 with fast Mg2+ diffusion kinetics for high-capacity and long-life Mg-ion storage. ACS Sustainable Chem. Eng. 2020, 8, 16164–16171.

[9]

Du, A. B.; Zhang, H. R.; Zhang, Z. H.; Zhao, J. W.; Cui, Z. L.; Zhao, Y. M.; Dong, S. M.; Wang, L. L.; Zhou, X. H.; Cui, G. L. A crosslinked polytetrahydrofuran-borate-based polymer electrolyte enabling wide-working-temperature-range rechargeable magnesium batteries. Adv. Mater. 2019, 31, 1805930.

[10]

Xu, Y. N.; Deng, X. W.; Li, Q. D.; Zhang, G. B.; Xiong, F. Y.; Tan, S. S.; Wei, Q. L.; Lu, J.; Li, J. T.; An, Q. Y.; et al. Vanadium oxide pillared by interlayer Mg2+ ions and water as ultralong-life cathodes for magnesium-ion batteries. Chem 2019, 5, 1194–1209.

[11]

Zhu, C. X.; Tang, Y. K.; Liu, L.; Sheng, R.; Li, X. H.; Gao, Y.; NuLi, Y. N. A high-performance rechargeable Mg2+/Li+ hybrid battery using CNT@TiO2 nanocables as the cathode. J. Colloid Interface Sci. 2021, 581, 307–313.

[12]

Zhao, Z. X.; Yi, Z. L.; Li, H. J.; Pathak, R.; Yang, Z. W.; Wang, X. M.; Qiao, Q. Q. Synergetic effect of spatially separated dual Co-catalyst for accelerating multiple conversion reaction in advanced lithium sulfur batteries. Nano Energy 2021, 81, 105621.

[13]

Lei, X.; Zheng, Y. P.; Zhang, F.; Wang, Y.; Tang, Y. B. Highly stable magnesium-ion-based dual-ion batteries based on insoluble small-molecule organic anode material. Energy Stor. Mater. 2020, 30, 34–41.

[14]
Wu, N. Z.; Zhou, X. L.; Kidkhunthod, P.; Yao, W. J.; Song, T. Y.; Tang, Y. B. K-ion battery cathode design utilizing trigonal prismatic ligand field. Adv. Mater., in press, DOI: 10.1002/adma.202101788.
[15]

Yang, R.; Zhang, F.; Lei, X.; Zheng, Y. P.; Zhao, G. H.; Tang, Y. B.; Lee, C. S. Pseudocapacitive Ti-doped niobium pentoxide nanoflake structure design for a fast kinetics anode toward a high-performance Mg-ion-based dual-ion battery. ACS Appl. Mater. Interfaces 2020, 12, 47539–47547.

[16]

Shimokawa, K.; Atsumi, T.; Okamoto, N. L.; Kawaguchi, T.; Imashuku, S.; Wagatsuma, K.; Nakayama, M.; Kanamura, K.; Ichitsubo, T. Structure design of long-life spinel-oxide cathode materials for magnesium rechargeable batteries. Adv. Mater. 2021, 33, 2007539.

[17]

Idemoto, Y.; Ichiyama, M.; Ishida, N.; Kitamura, N. Structural and electronic properties of spinel type Mg1+yCo2−xyMnxO4 for cathode applications in magnesium rechargeable batteries. J. Power Sources 2021, 482, 228920.

[18]

Li, Y. Q.; Zuo, P. J.; Zhang, N. B.; Yin, X. C.; Li, R. N.; He, M. X.; Huo, H.; Ma, Y. L.; Du, C. Y.; Gao, Y. Z. et al. Improving electrochemical performance of rechargeable magnesium batteries with conditioning-free Mg-Cl complex electrolyte. Chem. Eng. J. 2021, 403, 126398.

[19]

Tuerxun, F.; Yamamoto, K.; Mandai, T.; Tateyama, Y.; Nakanishi, K.; Uchiyama, T.; Watanabe, T.; Tamenori, Y.; Kanamura, K.; Uchimoto, Y. Effect of interaction among magnesium ions, anion, and solvent on kinetics of the magnesium deposition process. J. Phys. Chem. C 2020, 124, 28510–28519.

[20]

Pei, C. Y.; Xiong, F. Y.; Yin, Y. M.; Liu, Z. A.; Tang, H.; Sun, R. M.; An, Q. Y.; Mai, L. Recent progress and challenges in the optimization of electrode materials for rechargeable magnesium batteries. Small 2021, 17, 2004108.

[21]

Xue, X. L.; Chen, R. P.; Song, X. M.; Tao, A. Y.; Yan, W.; Kong, W. H.; Jin, Z. Electrochemical Mg2+ displacement driven reversible copper extrusion/intrusion reactions for high-rate rechargeable magnesium batteries. Adv. Funct. Mater. 2021, 31, 2009394.

[22]

Park, H.; Lim, H. K.; Oh, S. H.; Park, J.; Lim, H. D.; Kang, K. Tailoring ion-conducting interphases on magnesium metals for high-efficiency rechargeable magnesium metal batteries. ACS Energy Lett. 2020, 5, 3733–3740.

[23]

Liang, Y. L.; Feng, R. J.; Yang, S. Q.; Ma, H.; Liang, J.; Chen, J. Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv. Mater. 2011, 23, 640–643.

[24]

Singh, R.; Janakiraman, S.; Agrawal, A.; Ghosh, S.; Venimadhav, A.; Biswas, K. An amorphous poly(vinylidene fluoride-co-hexafluoropropylene) based gel polymer electrolyte for magnesium ion battery. J. Electroanal. Chem. 2020, 858, 113788.

[25]

Shen, Y. L.; Wang, Y. J.; Miao, Y. C.; Yang, M.; Zhao, X. Y.; Shen, X. D. High-energy interlayer-expanded copper sulfide cathode material in non-corrosive electrolyte for rechargeable magnesium batteries. Adv. Mater. 2020, 32, 1905524.

[26]

Liang, Z. M.; Ban, C. M. Strategies to enable reversible magnesium electrochemistry: From electrolytes to artificial solid–electrolyte interphases. Angew. Chem., Int. Ed. 2021, 60, 11036–11047.

[27]

Du, C. L.; Zhu, Y. Q.; Wang, Z. T.; Wang, L. Q.; Younas, W.; Ma, X. L.; Cao, C. B. Cuprous self-doping regulated mesoporous CuS nanotube cathode materials for rechargeable magnesium batteries. ACS Appl. Mater. Interfaces 2020, 12, 35035–35042.

[28]

Christensen, C. K.; Bøjesen, E. D.; Sørensen, D. R.; Kristensen, J. H.; Mathiesen, J. K.; Iversen, B. B.; Ravnsbæk, D. B. Structural evolution during lithium- and magnesium-ion intercalation in vanadium oxide nanotube electrodes for battery applications. ACS Appl. Nano Mater. 2018, 1, 5071–5082.

[29]

You, C. L.; Wu, X. W.; Yuan, X. H.; Chen, Y. H.; Liu, L. L.; Zhu, Y. S.; Fu, L. J.; Wu, Y. P.; Guo, Y. G.; van Ree, T. Advances in rechargeable Mg batteries. J. Mater. Chem. A 2020, 8, 25601–25625.

[30]

Dey, S.; Lee, J.; Britto, S.; Stratford, J. M.; Keyzer, E. N.; Dunstan, M. T.; Cibin, G.; Cassidy, S. J.; Elgaml, M.; Grey, C. P. Exploring cation–anion redox processes in one-dimensional linear chain vanadium tetrasulfide rechargeable magnesium ion cathodes. J. Am. Chem. Soc. 2020, 142, 19588–19601.

[31]
Yu, Z.; Juran, T. R.; Liu, X. Y.; Han, K. S.; Wang, H.; Mueller, K. T.; Ma, L.; Xu, K.; Li, T.; Curtiss, L. A. et al. Solvation structure and dynamics of Mg(TFSI)2 aqueous electrolyte. Energy Environ. Mater., in press, DOI: 10.1002/eem2.12174.
[32]

Cai, X. Y.; Xu, Y. N.; An, Q. Y.; Jiang, Y. L.; Liu, Z. A.; Xiong, F. Y.; Zou, W. Y.; Zhang, G.; Dai, Y. H.; Yu, R. et al. MOF derived TiO2 with reversible magnesium pseudocapacitance for ultralong-life Mg metal batteries. Chem. Eng. J. 2021, 418, 128491.

[33]

Aurbach, D.; Suresh, G. S.; Levi, E.; Mitelman, A.; Mizrahi, O.; Chusid, O.; Brunelli, M. Progress in rechargeable magnesium battery technology. Adv. Mater. 2007, 19, 4260–4267.

[34]

Liu, F. F.; Wang, T. T.; Liu, X. B.; Fan, L. Z. Challenges and recent progress on key materials for rechargeable magnesium batteries. Adv. Energy Mater. 2021, 11, 2000787.

[35]

Attias, R.; Bublil, S.; Salama, M.; Goffer, Y.; Aurbach, D. How solution chemistry affects the electrochemical behavior of cathodes for Mg batteries, a classical electroanalytical study. Electrochim. Acta 2020, 334, 135614.

[36]

Dong, H.; Tutusaus, O.; Liang, Y. L.; Zhang, Y.; Lebens-Higgins, Z.; Yang, W. L.; Mohtadi, R.; Yao, Y. High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes. Nat. Energy 2020, 5, 1043–1050.

[37]

Wang, Y. R.; Liu, Z. T.; Wang, C. X.; Hu, Y.; Lin, H. N.; Kong, W. H.; Ma, J.; Jin, Z. π-conjugated polyimide-based organic cathodes with extremely-long cycling life for rechargeable magnesium batteries. Energy Stor. Mater. 2020, 26, 494–502.

[38]

Pei, C. Y.; Xiong, F. Y.; Sheng, J. Z.; Yin, Y. M.; Tan, S. S.; Wang, D. D.; Han, C. H.; An, Q. Y.; Mai, L. VO2 nanoflakes as the cathode material of hybrid magnesium–lithium-ion batteries with high energy density. ACS Appl. Mater. Interfaces 2017, 9, 17060–17066.

[39]

Lu, T.; Zhang, Z. H.; Chen, B. B.; Dong, S. M.; Wang, C. D.; Du, A. B.; Wang, L. L.; Ma, J.; Cui, G. L. A superior electronic conducting tellurium electrode enabled high rate capability rechargeable Mg batteries. Mater. Today Energy 2020, 17, 100450.

[40]

Tan, S. S.; Xiong, F. Y.; Wang, J. J.; An, Q. Y.; Mai, L. Q. Crystal regulation towards rechargeable magnesium battery cathode materials. Mater. Horiz. 2020, 7, 1971–1995.

[41]

Wang, Z. T.; Zhu, Y. Q.; Peng, H.; Du, C. L.; Ma, X. L.; Cao, C. B. Microwave-induced phase engineering of copper sulfide nanosheets for rechargeable magnesium batteries. Electrochim. Acta 2021, 374, 137965.

[42]

Du, C. L.; Younas, W.; Wang, Z. T.; Yang, X. Y.; Meng, E. C.; Wang, L. Q.; Huang, J. Q.; Ma, X. L.; Zhu, Y. Q.; Cao, C. B. Constructing sheet-assembled hollow CuSe nanocubes to boost the rate capability of rechargeable magnesium batteries. J. Mater. Chem. A 2021, 9, 3648–3656.

[43]

Wang, Y. R.; Liu, Z. T.; Wang, C. X.; Yi, X.; Chen, R. P.; Ma, L. B.; Hu, Y.; Zhu, G. Y.; Chen, T.; Tie, Z. et al. Highly branched VS4 nanodendrites with 1D atomic-chain structure as a promising cathode material for long-cycling magnesium batteries. Adv. Mater. 2018, 30, 1802563.

[44]

Zuo, C. L.; Tang, W.; Lan, B. X.; Xiong, F. Y.; Tang, H.; Dong, S. J.; Zhang, W. W.; Tang, C.; Li, J. T.; Ruan, Y. S. et al. Unexpected discovery of magnesium-vanadium spinel oxide containing extractable Mg2+ as a high-capacity cathode material for magnesium ion batteries. Chem. Eng. J. 2021, 405, 127005.

[45]

Cheng, X. Y.; Zhang, Z. H.; Kong, Q. Y.; Zhang, Q. H.; Wang, T.; Dong, S. M.; Gu, L.; Wang, X.; Ma, J.; Han, P. X. et al. Highly reversible cuprous mediated cathode chemistry for magnesium batteries. Angew. Chem., Int. Ed. 2020, 59, 11477–11482.

[46]

Song, Z. H.; Zhang, Z. H.; Du, A. B.; Dong, S. M.; Li, G. C.; Cui, G. L. Insights into interfacial speciation and deposition morphology evolution at Mg-electrolyte interfaces under practical conditions. J. Energy Chem. 2020, 48, 299–307.

[47]

Tang, H.; Xiong, F. Y.; Jiang, Y. L.; Pei, C. Y.; Tan, S. S.; Yang, W.; Li, M. S.; An, Q. Y.; Mai, L. Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage. Nano Energy 2019, 58, 347–354.

[48]

Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Prototype systems for rechargeable magnesium batteries. Nature 2000, 407, 724–727.

[49]

Zeng, J.; Wu, D. Z.; Wang, X.; Wu, J. N.; Li, J. Y.; Wang, J.; Zhao, J. B. Insights into the Mg storage property and mechanism based on the honeycomb-like structured Na3V2(PO4)3/C/G in anhydrous electrolyte. Chem. Eng. J. 2019, 372, 37–45.

[50]

Cao, A. M.; Hu, J. S.; Liang, H. P.; Wan, L. J. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew. Chem., Int. Ed. 2005, 44, 4391–4395.

[51]

Wu, D. Z.; Zeng, J.; Hua, H. M.; Wu, J. N.; Yang, Y.; Zhao, J. B. NaV6O15: A promising cathode material for insertion/extraction of Mg2+ with excellent cycling performance. Nano Res. 2020, 13, 335–343.

[52]

Su, D. W.; Wang, G. X. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 2013, 7, 11218–11226.

[53]

Drosos, C.; Jia, C. L.; Mathew, S.; Palgrave, R. G.; Moss, B.; Kafizas, A.; Vernardou, D. Aerosol-assisted chemical vapor deposition of V2O5 cathodes with high rate capabilities for magnesium-ion batteries. J. Power Sources 2018, 384, 355–359.

[54]

Zuo, C. L.; Xiao, Y.; Pan, X. J.; Xiong, F. Y.; Zhang, W. W.; Long, J. C.; Dong, S. J.; An, Q. Y.; Luo, P. Organic-inorganic superlattices of vanadium oxide@polyaniline for high-performance magnesium-ion batteries. ChemSusChem 2021, 14, 2093–2099.

[55]

Novák, P.; Desilvestro, J. Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes. J. Electrochem. Soc. 1993, 140, 140–144.

[56]

Perera, S. D.; Archer, R. B.; Damin, C. A.; Mendoza-Cruz, R.; Rhodes, C. P. Controlling interlayer interactions in vanadium pentoxide-poly(ethylene oxide) nanocomposites for enhanced magnesium-ion charge transport and storage. J. Power Sources 2017, 343, 580–591.

[57]

Wang, Y. R.; Xue, X. L.; Liu, P. Y.; Wang, C. X.; Yi, X.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Chen, R. P.; Chen, T. et al. Atomic substitution enabled synthesis of vacancy-rich two-dimensional black TiO2–x nanoflakes for high-performance rechargeable magnesium batteries. ACS Nano 2018, 12, 12492–12502.

[58]

Wu, D. Z.; Wen, Z. P.; Jiang, H. B.; Li, H.; Zhuang, Y. C.; Li, J.; Yang, Y. Y.; Zeng, J.; Cheng, J.; Zhao, J. B. Ultralong-lifespan magnesium batteries enabled by the synergetic manipulation of oxygen vacancies and electronic conduction. ACS Appl. Mater. Interfaces 2021, 13, 12049–12058.

[59]

Gershinsky, G.; Yoo, H. D.; Gofer, Y.; Aurbach, D. Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 2013, 29, 10964–10972.

Nano Research
Pages 4880-4887
Cite this article:
Wu D, Zhuang Y, Wang F, et al. High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Research, 2023, 16(4): 4880-4887. https://doi.org/10.1007/s12274-021-3679-2
Part of a topical collection:

1311

Views

26

Crossref

27

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 13 April 2021
Revised: 27 May 2021
Accepted: 14 June 2021
Published: 06 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return