AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium–sulfur batteries

Ning Song1Baojuan Xi1( )Peng Wang1Xiaojian Ma1Weihua Chen2Jinkui Feng3Shenglin Xiong1( )
Key Laboratory of Colloid and Interface Chemistry, Ministry of EducationSchool of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials, Shandong UniversityJinan 250100 China
Key Laboratory of Material Processing and Mold of Ministry of Education Zhengzhou UniversityZhengzhou 450001 China
Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials Ministry of Education School of Materials Science and Engineering Shandong UniversityJinan 250061 China
Show Author Information

Graphical Abstract

Abstract

The exploitation of new sulfiphilic and catalytic materials is considered as the promising strategy to overcome severe shuttle effect and sluggish kinetics conversion of lithium polysulfides within lithium−sulfur batteries. Herein, we design and fabricate monodisperse VN ultrafine nanocrystals immobilized on nitrogen-doped carbon hybrid nanosheets (VN@NCSs) via an one-step in-situ self- template and self-reduction strategy, which simultaneously promotes the interaction with polysulfides and the kinetics of the sulfur conversion reactions demonstrated by experimental and theoretical results. By virtue of the multifunctional structural features of VN@NCSs, the cell with ultrathin VN@NCSs (only 5 μm thickness) modified separator indicates improved electrochemical performances with long cycling stability over 1, 000 cycles at 2 C with only 0.041% capacity decay per cycle and excellent rate capability (787.6 mAh·g−1 at 10 C). Importantly, it delivers an areal reversible capacity of 3.71 mAh·cm−2 accompanied by robust cycling life.

Electronic Supplementary Material

Download File(s)
12274_2021_3681_MOESM1_ESM.pdf (6.2 MB)

References

1

Zhang, L. L.; Liu, D. B.; Muhammad, Z.; Wan, F.; Xie, W.; Wang, Y. J.; Song, L.; Niu, Z. Q.; Chen, J. Single nickel atoms on nitrogen- doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903955.

2

Yu, J.; Xiao, J. W.; Li, A. R.; Yang, Z.; Zeng, L.; Zhang, Q. F.; Zhu, Y. J.; Gou, L. Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S batteries. Angew. Chem., Int. Ed. 2020, 59, 13071–13078.

3

Huang, Y. F.; Chen, S. X.; Wu, Z. L.; Wang, J.; Deng, Q.; Zeng, Z. L.; Deng, S. G. Enhanced performance and electrocatalytic kinetics on porous carbon-coated SnS microflowers as efficient Li-S battery cathodes. Electrochim. Acta 2020, 343, 136148.

4

Jana, M.; Xu, R.; Cheng, X. B.; Yeon, J. S.; Park, J. M. Huang, J. Q.; Zhang, Q.; Park, H. S. Rational design of two-dimensional nano­materials for lithium-sulfur batteries. Energy Environ. Sci. 2020, 13, 1049–1075.

5

Sun, F.; Qu, Z. B.; Wang, H.; Liu, X. Y.; Pei, T.; Han, R.; Gao, J. H.; Zhao, G. B.; Lu, Y. F. Vapor deposition of aluminium oxide into N-rich mesoporous carbon framework as a reversible sulfur host for lithium-sulfur battery cathode. Nano Res. 2021, 14, 131–138.

6

Ye, H. L.; Sun, J. G.; Zhang, S. L.; Lin, H. B.; Zhang, T. R.; Yao, Q. F.; Lee, J. Y. Stepwise electrocatalysis as a strategy against polysulfide shuttling in Li−S batteries. ACS Nano 2019, 13, 14208–14216.

7

Cai, W. L.; Song, Y. Z.; Fang, Y. T.; Wang, W. W.; Yu, S. L.; Ao, H. S.; Zhu, Y. C.; Qian, Y. T. Defect engineering on carbon black for accelerated Li-S chemistry. Nano Res. 2020, 13, 3315–3320.

8

Wang, Z. S.; Shen, J. D.; Ji, S. M.; Xu, X. J.; Zuo, S. Y.; Liu, Z. B.; Zhang, D. C.; Hu, R. Z.; Ouyang, L. Z.; Liu, J. et al. B, N-codoped graphitic nanotubes loaded with Co nanoparticles as superior sulfur host for advanced Li-S batteries. Small 2020, 16, 1906634.

9

Wang, J. L.; Yan, X. F.; Zhang, Z.; Ying, H. J.; Guo, R. N.; Yang, W. T.; Han, W. Q. Facile preparation of high-content N-doped CNT microspheres for high-performance lithium storage. Adv. Funct. Mater. 2019, 29, 1904819.

10

Li, W. D.; Wang, D. Z.; Song, Z. H.; Gong, Z. J.; Guo, X. S.; Liu, J.; Zhang, Z. H.; Li, G. C. Carbon confinement synthesis of interlayer- expanded and sulfur-enriched MoS2+x nanocoating on hollow carbon spheres for advanced Li-S batteries. Nano Res. 2019, 12, 2908–2917.

11

Zhang, J.; Ma, W. Z.; Feng, Z. Y.; Wu, F. F.; Wei, D. H.; Xi, B. J; Xiong, S. L. P-doped BN nanosheets decorated graphene as the functional interlayer for Li-S batteries. J. Energy Chem. 2019, 39, 54–60.

12

Tian, W. Z.; Xi, B. J.; Gu, Y.; Fu, Q.; Feng, Z. Y.; Feng, J. K.; Xiong, S. L. Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Res. 2020, 13, 2673–2682.

13

Zuo, X. T.; Zhen, M. M.; Wang, C. Ni@N-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries. Nano Res. 2019, 12, 829–836.

14

Shi, N. X.; Xi, B. J.; Feng, Z. Y.; Wu, F. F.; Wei, D. H.; Liu, J.; Xiong, S. L. Insight into different-microstructured ZnO/graphene-functionalized separators affecting the performance of lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 4009–4018.

15

Li, Z.; Ma, Z. L.; Wang, Y. Y.; Chen, R.; Wu, Z. J.; Wang, S. Y. LDHs derived nanoparticle-stacked metal nitride as interlayer for long-life lithium sulfur batteries. Sci. Bull. 2018, 63, 169–175.

16

Li, Y. J.; Zhou, P.; Li, H.; Gao, T. T.; Zhou, L.; Zhang, Y. L.; Xiao, N.; Xia, Z. H.; Wang, L.; Zhang, Q. H. et al. A freestanding flexible single-atom cobalt-based multifunctional interlayer toward reversible and durable lithium-sulfur batteries. Small Methods 2020, 4, 190070.

17

Ma, L. B.; Zhang, W. J.; Wang, L.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Chen, R. P.; Chen, T.; Tie, Z. X.; Liu, J. et al. Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithium-sulfur batteries. ACS Nano 2018, 12, 4868–4876.

18

Lu, H. Y.; Zhang, C.; Zhang, Y. F.; Huang, Y. P.; Liu, M. K.; Liu, T. X. Simultaneous growth of carbon nanotubes on inner/outer surfaces of porous polyhedra: Advanced sulfur hosts for lithium-sulfur batteries. Nano Res. 2018, 11, 6155–6166.

19

Wang, Y. Y.; Wang, Z. J.; Yu, X. L.; Li, B. H.; Kang, F. Y.; He, Y. B. Hierarchically structured carbon nanomaterials for electrochemical energy storage applications. J. Mater. Res. 2018, 33, 1058–1073.

20

Chen, J. J.; Mao, Z. Y.; Zhang, L. X.; Wang, D. J.; Xu, R.; Bie, L. J.; Fahlman, B. D. Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes. ACS Nano 2017, 11, 12650–12657.

21

Wang, R.; Yang, J. L.; Chen, X.; Zhao, Y.; Zhao, W. G.; Qian, G. Y.; Li, S. N.; Xiao, Y. G.; Chen, H.; Ye, Y. S. et al. Highly dispersed cobalt clusters in nitrogen-doped porous carbon enable multiple effects for high-performance Li-S battery. Adv. Energy Mater. 2020, 10, 1903550.

22

Pender, J. P.; Guerrera, J. V.; Wygant, B. R.; Weeks, J. A.; Ciufo, R. A.; Burrow, J. N.; Walk, M. K.; Rahman, M. Z.; Heller, A.; Mullins, C. B. Carbon nitride transforms into a high lithium storage capacity nitrogen-rich carbon. ACS Nano 2019, 13, 9279–9291.

23

Lin, C.; Qu, L. B.; Li, J. T.; Cai, Z. Y.; Liu, H. Y.; He, P.; Xu, X.; Mai, L. Q. Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries. Nano Res. 2019, 12, 205–210.

24

Han, J. M.; Fu, Q.; Xi, B. J.; Ni, X. Y.; Yan, C. L.; Feng, J. K.; Xiong, S. L. Loading Fe3O4 nanoparticles on paper-derived carbon scaffold toward advanced lithium-sulfur batteries. J. Energy Chem. 2021, 52, 1–11.

25

Shen, J. D.; Xu, X. J.; Liu, J.; Liu, Z. B.; Li, F. K., Hu, R. Z.; Liu, J. W.; Hou, X. H.; Feng, Y. Z.; Yu, Y.; Zhu, M. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries. ACS Nano 2019, 13, 8986–8996.

26

Chen, X. X.; Zeng, S. Y.; Muheiyati, H.; Zhai, Y. J.; Li, C. C.; Ding, X. Y.; Wang, L.; Wang, D. B.; Xu, L. Q.; He, Y. Y. et al. Double-shelled Ni−Fe−P/N-doped carbon nanobox derived from a Prussian blue analogue as an electrode material for K-ion batteries and Li-S batteries. ACS Energy Lett. 2019, 4, 1496–1504.

27

Kong, L.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Review of nano­structured current collectors in lithium-sulfur batteries. Nano Res. 2017, 10, 4027–4054.

28

Liang, Y. C.; Oettinger, J. D.; Zhang, P.; Xu, B. Ni or FeO nanocrystal-integrated hollow (solid) N-doped carbon nanospheres: Preparation, characterization and electrochemical properties. Nanoscale 2020, 12, 15157–15168.

29

Yang, J.; Zhang, Q. C.; Wang, Z. X.; Wang, Z.; Kang, L. X.; Qi, M.; Chen, M. X.; Liu, W.; Gong, W. B.; Lu, W. B. et al. Rational construction of self-standing sulfur-doped Fe2O3 anodes with promoted energy storage capability for wearable aqueous rechargeable NiCo-Fe batteries. Adv. Energy Mater. 2020, 10, 2001064.

30

Zhang, H.; Gao, Q. M.; Li, Z. Y.; Xu, P.; Xiao, H.; Zhang, T. F.; Liang, X. A rGO-Based Fe2O3 and Mn3O4 binary crystals nanocomposite additive for high performance Li-S battery. Electrochim. Acta 2020, 343, 136079.

31

Zhou, F.; Li, Z.; Lou, X.; Wu, T.; Jiang, B.; Lu, L. L.; Yao, H. B.; Antonietti, M.; Yu, S. H. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries. Nano Lett. 2018, 18, 1035–1043.

32

Shi, N. X.; Xi, B. J.; Feng, Z. Y.; Liu, J. C.; Wei, D. H.; Liu, J.; Feng, J. K.; Xiong, S. L. Strongly coupled W2C atomic nanoclusters on N/P-codoped graphene for kinetically enhanced sulfur host. Adv. Mater. Interfaces 2019, 6, 1802088.

33

Sun, W. W.; Li, Y. J.; Liu, S. K.; Guo, Q. P.; Zhu, Y. H.; Hong, X. B.; Zheng, C. M.; Xie, K. Catalytic Co9S8 decorated carbon nanoboxes as efficient cathode host for long-life lithium-sulfur batteries. Nano Res. 2020, 13, 2143–2148.

34

Yu, X. F.; Tian, D. X.; Li, W. C.; He, B.; Zhang, Y.; Chen, Z. Y.; Lu, A. H. One-pot synthesis of highly conductive nickel-rich phosphide/ CNTs hybrid as a polar sulfur host for high-rate and long-cycle Li-S battery. Nano Res. 2019, 12, 1193–1197.

35

Lv, L. P.; Guo, C. F.; Sun, W. W.; Wang, Y. Strong surface-bound sulfur in carbon nanotube bridged hierarchical Mo2C-based MXene nanosheets for lithium-sulfur batteries. Small 2019, 15, 1804338.

36

Li, H. H.; Ma, Y. A.; Zhang, H.; Diemant, T.; Behm, R. J.; Varzi, A.; Passerini, S. Metal-organic framework derived Fe7S8 nanoparticles embedded in heteroatom-doped carbon with lithium and sodium storage capability. Small Methods 2020, 4, 2000637.

37

Zou, Y. H.; Gu, Y.; Hui, B.; Yang, X. F.; Liu, H. W.; Chen, S.; Cai, R. S.; Sun, J.; Zhang, X. L.; Yang, D. J. Nitrogen and sulfur vacancies in carbon shell to tune charge distribution of Co6Ni3S8 core and boost sodium storage. Adv. Energy Mater. 2020, 10, 1904147.

38

Zeng, P.; Liu, C.; Zhao, X. F.; Yuan, C.; Chen, Y. G.; Lin, H. P.; Zhang, L. Enhanced catalytic conversion of polysulfides using bimetallic Co7Fe3 for high-performance lithium-sulfur batteries. ACS Nano 2020, 14, 11558–11569.

39

Chen, K. N.; Cao, J.; Lu, Q. Q.; Wang, Q. R.; Yao, M. J.; Han, M. M.; Niu, Z. Q. Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries. Nano Res. 2018, 11, 1345–1357.

40

He, H. C.; Chen, C. M.; Chen, Z.; Li, P. C.; Ding, S. S.; Cai, M. Q.; Zhang, M. Ni3S2@S-carbon nanotubes synthesized using NiS2 as sulfur source and precursor for high performance sodium-ion half/full cells. Sci. China Mater. 2020, 63, 216–228.

41

Li, X. X.; Ding, K.; Gao, B.; Li, Q. W.; Li, Y. Y.; Fu, J. J.; Zhang, X. M.; Chu, P. K.; Huo, K. F. Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries. Nano Energy 2017, 40, 655–662.

42

Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

43

Song, Y. Z.; Zhao, S. Y.; Chen, Y. R.; Cai, J. S.; Li, J.; Yang, Q. H.; Sun, J. Y.; Liu, Z. F. Enhanced sulfur redox and polysulfide regulation via porous VN-modified separator for Li−S batteries. ACS Appl. Mater. Interfaces 2019, 11, 5687–5694.

44

Wang, P.; Zhang, Z. A.; Hong, B.; Zhang, K.; Li, J.; Lai, Y. Q. Multifunctional porous VN nanowires interlayer as polysulfides barrier for high performance lithium sulfur batteries. J. Electroanal. Chem. 2019, 832, 475–479.

45

Li, J.; Gou, Y.; Wen, P.; Zhu, J. H.; Jiao, C. M.; Zhong, L. B.; Wang, J. Y.; Narayana, A. L.; Li, J. S.; Qiu, Y. J. Constructing a sandwich- structured interlayer with strong polysulfides adsorption ability for high-performance lithium-sulfur batteries. Mater. Today Energy 2019, 14, 100339.

46

Yuan, J.; Hu, X.; Chen, J. X.; Liu, Y. J.; Huang, T. Z.; Wen, Z. H. In situ formation of vanadium nitride quantum dots on N−doped carbon hollow spheres for superior lithium and sodium storage. J. Mater. Chem. A 2019, 7, 9289–9296.

47

Fan, Y. N.; Ma, F.; Liang, J. S.; Chen, X.; Miao, Z. P.; Duan, S.; Wang, L.; Wang, T. Y.; Han, J. T.; Gao, R. G. et al. Accelerated polysulfide conversion on hierarchical porous vanadium-nitrogen-carbon for advanced lithium-sulfur batteries. Nanoscale 2020, 12, 584–590.

48

Li, X. L.; Tang, R. W.; Hu, K.; Zhang, L. Y.; Ding, Z. Q. Hierarchical porous carbon aerogels with VN modification as cathode matrix for high performance lithium-sulfur batteries. Electrochim. Acta 2016, 210, 734–742.

49

Yao, Y.; Wang, H. Y.; Yang, H.; Zeng, S. F.; Xu, R.; Liu, F. F.; Shi, P. C.; Feng, Y. Z.; Wang, K.; Yang, W. J. et al. A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries. Adv. Mater. 2020, 32, 1905658.

50

Ma, F.; Wan, Y. Y.; Wang, X. M.; Wang, X. C.; Liang, J. S.; Miao, Z. P.; Wang, T. Y.; Ma, C.; Lu, G.; Han, J. T. et al. Bifunctional atomically dispersed Mo−N2/C nanosheets boost lithium sulfide deposition/decomposition for stable lithium-sulfur batteries. ACS Nano 2020, 14, 10115–10126.

51

Tian, D.; Song, X. Q.; Wang, M. X.; Wu, X.; Qiu, Y.; Guan, B.; Xu, X. Z.; Fan, L. S.; Zhang, N. Q.; Sun, K. N. MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries. Adv. Energy Mater. 2019, 9, 1901940.

52

Tian, W. Z.; Xi, B. J.; Mao, H. Z.; Zhang, J. H.; Feng, J. K.; Xiong, S. L. Systematic exploration of the role of a modified layer on the separator in the electrochemistry of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 30306–30313.

Nano Research
Pages 1424-1432
Cite this article:
Song N, Xi B, Wang P, et al. Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium–sulfur batteries. Nano Research, 2022, 15(2): 1424-1432. https://doi.org/10.1007/s12274-021-3681-8
Topics:

885

Views

49

Crossref

49

Web of Science

51

Scopus

7

CSCD

Altmetrics

Received: 16 May 2021
Revised: 11 June 2021
Accepted: 14 June 2021
Published: 28 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return