AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Crosstalk between PC12 cells and endothelial cells in an artificial neurovascular niche constructed by a dual-functionalized self- assembling peptide nanofiber hydrogel

Zhe Zhang1,§Yi Chai2,§He Zhao4Shuhui Yang1Wei Liu5Zihui Yang6Weilong Ye1Chenlong Wang7Xiaohan Gao2Xiangdong Kong3Xiaodan Sun1Lingyun Zhao1Tuoyu Chen2Yuqi Zhang2Jiaju Lu3( )Xiumei Wang1( )
State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua UniversityBeijing 100084 China
Department of Neurosurgery Yuquan Hospital, School of Clinical Medicine Tsinghua UniversityBeijing 100084 China
Institute of Smart Biomedical Materials, School of Materials Science and Engineering Zhejiang Sci-Tech UniversityHangzhou 310018 China
Department of orthopedics, Dongzhimen hospital Beijing University of Chinese MedicineBeijing 100700 China
Department of Neurosurgery The First Hospital of Hebei Medical UniversityShijiazhuang 050000 China
Department of Obstetrics and Gynecology Beijing Tsinghua Changgung HospitalBeijing 102218 China
Department of Chemistry Tsinghua UniversityBeijing 100084 China

§ Zhe Zhang and Yi Chai contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The coordination between neurogenesis and angiogenesis plays an important role in nerve tissue development and regeneration. Recently, using bioactive materials to drive neurogenic and angiogenic responses has gained increasing attention. Understanding the neurovascular link between regulatory cues offers valuable insight into the mechanisms underlying nerve regeneration and the design of new bioactive materials. In this study, we utilized a dual-functionalized peptide nanofiber hydrogel presenting the brain- derived neurotrophic factor and vascular endothelial growth factor mimetic peptides RGIDKRHWNSQ (RGI) and KLTWQELYQLKYKGI (KLT) to construct an artificial neurovascular microenvironment. The dual-functionalized peptide nanofiber hydrogel enhanced the neurite outgrowth of pheochromocytoma (PC12) cells and tube-like structures formation of human umbilical vein endothelial cells (HUVECs) in vitro, and promoted rapid lesion infiltration of neural and vascular cells in a rat brain injury model. Using indirect co-culture models, we found that the dual-functionalized peptide hydrogel effectively mediated neurovascular crosstalk by regulating secretion of paracrine factors from PC12 cells and HUVECs. When the two cells types were directly co-cultured on the dual-functionalized peptide hydrogel, the efficiency of cell–cell communication was enhanced, which further accelerated the differentiation and maturation of PC12 cells with an increased number of pseudopodia and spread morphology, and HUVECs tube-like structure formation. In summary, the dual-functionalized peptide nanofiber hydrogel successfully formed an artificial neurovascular niche to directly regulate the behaviors of neural and vascular cells and promote their neurovascular crosstalk through paracrine signaling and direct cell–cell contact.

Electronic Supplementary Material

Download File(s)
12274_2021_3684_MOESM1_ESM.pdf (1.6 MB)

References

1

Wäelchli, T.; Wacker, A.; Frei, K.; Regli, L.; Schwab, M. E.; Hoerstrup, S. P.; Gerhardt, H.; Engelhardt, B. Wiring the vascular network with neural cues: A CNS perspective. Neuron 2015, 87, 271–296.

2

Carmeliet, P. Blood vessels and nerves: Common signals, pathways and diseases. Nat. Rev. Genet. 2003, 4, 710–720.

3

Muangsanit, P.; Shipley, R. J.; Phillips, J. B. Vascularization strategies for peripheral nerve tissue engineering. Anat. Rec. 2018, 301, 1657–1667.

4

Paredes, I.; Himmels, P.; de Almodóvar, C. R. Neurovascular communication during CNS development. Dev. Cell 2018, 45, 10–32.

5

Katsimpardi, L.; Litterman, N. K.; Schein, P. A.; Miller, C. M.; Loffredo, F. S.; Wojtkiewicz, G. R.; Chen, J. W.; Lee, R. T.; Wagers, A. J.; Rubin, L. L. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 2014, 344, 630–634.

6

Mahar, M.; Cavalli, V. Intrinsic mechanisms of neuronal axon regeneration. Nat. Rev. Neurosci. 2018, 19, 323–337.

7

Nih, L. R.; Gojgini, S.; Carmichael, S. T.; Segura, T. Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nat. Mater. 2018, 17, 642–651.

8

Kunze, R.; Marti, H. H. Angioneurins–Key regulators of blood–brain barrier integrity during hypoxic and ischemic brain injury. Prog. Neurobiol. 2019, 178, 101611.

9

Zacchigna, S.; Lambrechts, D.; Carmeliet, P. Neurovascular signalling defects in neurodegeneration. Nat. Rev. Neurosci. 2008, 9, 169–181.

10

Lopatina, T.; Kalinina, N.; Karagyaur, M.; Stambolsky, D.; Rubina, K.; Revischin, A.; Pavlova, G.; Parfyonova, Y.; Tkachuk, V. Adipose- derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One 2011, 6, e17899.

11

Sun, Y. J.; Jin, K. L.; Xie, L.; Childs, J.; Mao, X. O.; Logvinova, A.; Greenberg, D. A. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 2003, 111, 1843–1851.

12

Jin, Y.; Kaluza, D.; Jakobsson, L. VEGF, Notch and TGFβ/BMPs in regulation of sprouting angiogenesis and vascular patterning. Biochem. Soc. Trans. 2014, 42, 1576–1583.

13

Donovan, M. J.; Lin, M. I.; Wiegn, P.; Ringstedt, T.; Kraemer, R.; Hahn, R.; Wang, S.; Ibanez, C. F.; Rafii, S.; Hempstead, B. L. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development 2000, 127, 4531–4540.

14

Lange, C.; Storkebaum, E.; de Almodovar, C. R.; Dewerchin, M.; Carmeliet, P. Vascular endothelial growth factor: A neurovascular target in neurological diseases. Nat. Rev. Neurol. 2016, 12, 439–454.

15

Hong, T. M.; Chen, Y. L.; Wu, Y. Y.; Yuan, A.; Chao, Y. C.; Chung, Y. C.; Wu, M. H.; Yang, S. C.; Pan, S. H.; Shih, J. Y. et al. Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clin. Cancer Res. 2007, 13, 4759–4768.

16

Li, Q.; Ford, M. C.; Lavik, E. B.; Madri, J. A. Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: An in vitro study. J. Neurosci. Res. 2006, 84, 1656–1668.

17

Lee, J. W.; Lee, K. Y. Dual peptide-presenting hydrogels for controlling the phenotype of PC12 cells. Colloids Surf. B Biointerfaces 2017, 152, 36–41.

18

Zhang, Y. P.; Huang, J. W.; Huang, L.; Liu, Q. Q.; Shao, H. L.; Hu, X. C.; Song, L. J. Silk fibroin-based scaffolds with controlled delivery order of VEGF and BDNF for cavernous nerve regeneration. ACS Biomater. Sci. Eng. 2016, 2, 2018–2025.

19

Wang, Z. M.; Wang, Z. F.; Lu, W. W.; Zhen, W. X.; Yang, D. Z.; Peng, S. L. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 2017, 9, e435.

20

Lu, J. J.; Sun, X.; Yin, H. Y.; Shen, X. Z.; Yang, S. H.; Wang, Y.; Jiang, W. L.; Sun, Y.; Zhao, L. Y.; Sun, X. D. et al. A neurotrophic peptide-functionalized self-assembling peptide nanofiber hydrogel enhances rat sciatic nerve regeneration. Nano Res. 2018, 11, 4599– 4613.

21

Lu, J. J.; Yan, X. Q.; Sun, X.; Shen, X. Z.; Yin, H. Y.; Wang, C. H.; Liu, Y. F.; Lu, C. F.; Fu, H. T.; Yang, S. H. et al. Synergistic effects of dual-presenting VEGF- and BDNF-mimetic peptide epitopes from self-assembling peptide hydrogels on peripheral nerve regeneration. Nanoscale 2019, 11, 19943–19958.

22

Grasman, J. M.; Ferreira, J. A.; Kaplan, D. L. Tissue models for neurogenesis and repair in 3D. Adv. Funct. Mater. 2018, 28, 1803822.

23

Li, M.; Zhang, A. Q.; Li, J. J.; Zhou, J.; Zheng, Y. N.; Zhang, C.; Xia, D. D.; Mao, H. J.; Zhao, J. Y. Osteoblast/fibroblast coculture derived bioactive ECM with unique matrisome profile facilitates bone regeneration. Bioact. Mater. 2020, 5, 938–948.

24

Cattin, A. L.; Burden, J. J.; Van Emmenis, L.; Mackenzie, F. E.; Hoving, J. J. A.; Calavia, N. G.; Guo, Y. P.; McLaughlin, M.; Rosenberg, L. H.; Quereda, V. et al. Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves. Cell 2015, 162, 1127–1139.

25

Muramatsu, R.; Takahashi, C.; Miyake, S.; Fujimura, H.; Mochizuki, H.; Yamashita, T. Angiogenesis induced by CNS inflammation promotes neuronal remodeling through vessel-derived prostacyclin. Nat. Med. 2012, 18, 1658–1664.

26

Ramos, T.; Ahmed, M.; Wieringa, P.; Moroni, L. Schwann cells promote endothelial cell migration. Cell Adh. Migr. 2015, 9, 441– 451.

27

Grasman, J. M.; Kaplan, D. L. Human endothelial cells secrete neurotropic factors to direct axonal growth of peripheral nerves. Sci. Rep. 2017, 7, 4092.

28

Wang, C.; Li, J. F.; Sinha, S.; Peterson, A.; Grant, G. A.; Yang, F. Mimicking brain tumor-vasculature microanatomical architecture via co-culture of brain tumor and endothelial cells in 3D hydrogels. Biomaterials 2019, 202, 35–44.

29

Arulmoli, J.; Wright, H. J.; Phan, D. T. T.; Sheth, U.; Que, R. A.; Botten, G. A.; Keating, M.; Botvinick, E. L.; Pathak, M. M.; Zarembinski, T. I. et al. Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomater. 2016, 43, 122–138.

30

Kim, J. A.; Lee, N.; Kim, B. H.; Rhee, W. J.; Yoon, S.; Hyeon, T.; Park, T. H. Enhancement of neurite outgrowth in PC12 cells by iron oxide nanoparticles. Biomaterials 2011, 32, 2871–2877.

31

Nakatsu, M. N.; Sainson, R. C. A.; Aoto, J. N.; Taylor, K. L.; Aitkenhead, M.; Pérez-del-Pulgar, S.; Carpenter, P. M.; Hughes, C. C. W. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: The role of fibroblasts and Angiopoietin-1. Microvasc. Res. 2003, 66, 102–112.

32

Liu, X.; Wang, X. M.; Horii, A.; Wang, X. J.; Qiao, L.; Zhang, S. G.; Cui, F. Z. In vivo studies on angiogenic activity of two designer self-assembling peptide scaffold hydrogels in the chicken embryo chorioallantoic membrane. Nanoscale 2012, 4, 2720–2727.

33

Böhm, G.; Muhr, R.; Jaenicke, R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng. Des. Sel. 1992, 5, 191–195.

34

Livak, K. J.; Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408.

35

Tang, C. K.; Shao, X. M.; Sun, B. B.; Huang, W. L.; Zhao, X. J. The effect of self-assembling peptide RADA16-Ⅰ on the growth of human leukemia cells in vitro and in nude mice. Int. J. Mol. Sci. 2009, 10, 2136–2145.

36

Kaplan, L.; Chow, B. W.; Gu, C. H. Neuronal regulation of the blood–brain barrier and neurovascular coupling. Nat. Rev. Neurosci. 2020, 21, 416–432.

37

Wang, X. M.; Horii, A.; Zhang, S. G. Designer functionalized self- assembling peptide nanofiber scaffolds for growth, migration, and tubulogenesis of human umbilical vein endothelial cells. Soft Matter 2008, 4, 2388–2395.

38

Li, X. W.; Zhang, C.; Haggerty, A. E.; Yan, J.; Lan, M.; Seu, M.; Yang, M. Y.; Marlow, M. M.; Maldonado-Lasunción, I.; Cho, B. et al. The effect of a nanofiber-hydrogel composite on neural tissue repair and regeneration in the contused spinal cord. Biomaterials 2020, 245, 119978.

39

Segarra, M.; Aburto, M. R.; Hefendehl, J.; Acker-Palmer, A. Neurovascular interactions in the nervous system. Annu. Rev. Cell Dev. Biol. 2019, 6, 615–635.

40

Potjewyd, G.; Moxon, S.; Wang, T.; Domingos, M.; Hooper, N. M. Tissue engineering 3D neurovascular units: A biomaterials and bioprinting perspective. Trends Biotechnol. 2018, 36, 457–472.

41

dos Santos, B. P.; Garbay, B.; Fenelon, M.; Rosselin, M.; Garanger, E.; Lecommandoux, S.; Oliveira, H.; Amédée, J. Development of a cell-free and growth factor-free hydrogel capable of inducing angiogenesis and innervation after subcutaneous implantation. Acta Biomater. 2019, 99, 154–167.

42

Guan, J.; Tong, W. M.; Ding, W. Y.; Du, S. W.; Xiao, Z. F.; Han, Q. Q.; Zhu, Z. H.; Bao, X. J.; Shi, X. M. et al. Neuronal regeneration and protection by collagen-binding BDNF in the rat middle cerebral artery occlusion model. Biomaterials 2012, 33, 1386–1395.

43

Wang, T. W.; Chang, K. C.; Chen, L. H.; Liao, S. Y.; Yeh, C. W.; Chuang, Y. J. Effects of an injectable functionalized self-assembling nanopeptide hydrogel on angiogenesis and neurogenesis for regeneration of the central nervous system. Nanoscale 2017, 9, 16281–16292.

44

Lu, C. F.; Wang, Y.; Yang, S. H.; Wang, C.; Sun, X.; Lu, J. J.; Yin, H. Y.; Jiang, W. L.; Meng, H. Y. et al. Bioactive self-assembling peptide hydrogels functionalized with brain-derived neurotrophic factor and nerve growth factor mimicking peptides synergistically promote peripheral nerve regeneration. ACS Biomater. Sci. Eng. 2018, 4, 2994–3005.

45

Liu, G. H.; Wu, R. P.; Yang, B.; Shi, Y. A.; Deng, C. H.; Atala, A.; Mou, S.; Criswell, T.; Zhang, Y. Y. A cocktail of growth factors released from a heparin hyaluronic-acid hydrogel promotes the myogenic potential of human urine-derived stem cells in vivo. Acta Biomater. 2020, 107, 50–64.

46

Yao, S.; Yu, S.; Cao, Z.; Yang, Y.; Yu, X.; Mao, H. Q.; Wang, L. N.; Sun, X.; Zhao, L.; Wang, X. M. Hierarchically aligned fibrin nanofiber hydrogel accelerated axonal regrowth and locomotor function recovery in rat spinal cord injury. Int. J. Nanomedicine 2018, 13, 2883–2895.

47

Yang, S. H.; Wang, C.; Zhu, J. J.; Lu, C. F.; Li, H. T.; Chen, F. Y.; Lu, J. J.; Zhang, Z.; Yan, X. Q.; Zhao, H. et al. Self-assembling peptide hydrogels functionalized with LN- and BDNF- mimicking epitopes synergistically enhance peripheral nerve regeneration. Theranostics 2020, 10, 8227–8249.

48

Alarcon-Martinez, L.; Villafranca-Baughman, D.; Quintero, H.; Kacerovsky, J. B.; Dotigny, F.; Murai, K. K.; Prat, A.; Drapeau, P.; Di Polo, A. Interpericyte tunnelling nanotubes regulate neurovascular coupling. Nature 2020, 585, 91–95.

49

Wang, H. K.; Zhu, H.; Guo, Q.; Qian, T. M.; Zhang, P.; Li, S. Y.; Xue, C. B.; Gu, X. S. Overlapping mechanisms of peripheral nerve regeneration and angiogenesis following sciatic nerve transection. Front. Cell. Neurosci. 2017, 11, 323.

50

Geuna, S.; Raimondo, S.; Fregnan, F.; Haastert-Talini, K.; Grothe, C. In vitro models for peripheral nerve regeneration. Eur. J. Neurosci. 2016, 43, 287–296.

51

Qiu, L. H.; He, B.; Hu, J.; Zhu, Z. W.; Liu, X. L.; Zhu, J. K. Cartilage oligomeric matrix protein angiopoeitin-1 provides benefits during nerve regeneration in vivo and in vitro. Ann. Biomed. Eng. 2015, 43, 2924–2940.

52

Wei, D.; Sun, J.; Yang, Y.; Wu, C. H.; Chen, S. P.; Guo, Z. Z.; Fan, H. S.; Zhang, X. D. Cell alignment guided by nano/micro oriented collagen fibers and the synergistic vascularization for nervous cell functional expression. Mater. Today Chem. 2018, 8, 85–95.

53

Yang, K.; Lee, J. S.; Han, S.; Jin, Y.; Cho, A. N.; Chang, G. E.; Cheong, E.; Yang, J. H.; Chung, S.; Cho, S. W. Endothelial-neurosphere crosstalk in microwell arrays regulates self-renewal and differentiation of human neural stem cells. J. Ind. Eng. Chem. 2019, 74, 148–157.

Nano Research
Pages 1433-1445
Cite this article:
Zhang Z, Chai Y, Zhao H, et al. Crosstalk between PC12 cells and endothelial cells in an artificial neurovascular niche constructed by a dual-functionalized self- assembling peptide nanofiber hydrogel. Nano Research, 2022, 15(2): 1433-1445. https://doi.org/10.1007/s12274-021-3684-5
Topics:

859

Views

11

Crossref

12

Web of Science

11

Scopus

1

CSCD

Altmetrics

Received: 21 April 2021
Revised: 09 June 2021
Accepted: 16 June 2021
Published: 03 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return