Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Review Article

Non-covalent interaction-based molecular electronics with graphene electrodes

Shiqiang ZhaoHang ChenQiaozan QianHewei ZhangYang Yang()Wenjing Hong ()
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China
Show Author Information

Graphical Abstract

View original image Download original image
The fabrication of molecular devices with graphene electrodes through non-covalent interactions and their electrical properties was summarized, and their perspectives were discussed.

Abstract

Recent years have witnessed the fabrication of various non-covalent interaction-based molecular electronic devices. In the non-covalent interaction-based molecular devices, the strength of the interfacial coupling between molecule and electrode is weakened compared to that of the covalent interaction-based molecular devices, which provides wide applications in fabricating versatile molecular devices. In this review, we start with the methods capable of fabricating graphene-based nanogaps, and the following routes to construct non-covalent interaction-based molecular junctions with graphene electrodes. Then we give an introduction to the reported non-covalent interaction-based molecular devices with graphene electrodes equipped with different electrical functions. Moreover, we summarize the recent progress in the design and fabrication of new-type molecular devices based on graphene and graphene-like two-dimensional (2D) materials. The review ends with a prospect on the challenges and opportunities of non-covalent interaction-based molecular electronics in the near future.

References

[1]

Coskun, A.; Spruell, J. M.; Barin, G.; Dichtel, W. R.; Flood, A. H.; Botros, Y. Y.; Stoddart, J. F. High hopes: Can molecular electronics realise its potential? Chem. Soc. Rev. 2012, 41, 4827–4859.

[2]

Xiang, D.; Wang, X. L.; Jia, C. C.; Lee, T.; Guo, X. F. Molecular-scale electronics: From concept to function. Chem. Rev. 2016, 116, 4318–4440.

[3]

Zhang, J. L.; Zhong, J. Q.; Lin, J. D.; Hu, W. P.; Wu, K.; Xu, G. Q.; Wee, A. T. S.; Chen, W. Towards single molecule switches. Chem. Soc. Rev. 2015, 44, 2998–3022.

[4]

Sun, L. L.; Diaz-Fernandez, Y. A.; Gschneidtner, T. A.; Westerlund, F.; Lara-Avila, S.; Moth-Poulsen, K. Single-molecule electronics: From chemical design to functional devices. Chem. Soc. Rev. 2014, 43, 7378–7411.

[5]

Darwish, N.; Paddon-Row, M. N.; Gooding, J. J. Surface-bound norbornylogous bridges as molecular rulers for investigating interfacial electrochemistry and as single molecule switches. Acc. Chem. Res. 2014, 47, 385–395.

[6]

Chen, H. L.; Zhang, W. N.; Li, M. L.; He, G.; Guo, X. F. Interface engineering in organic field-effect transistors: Principles, applications, and perspectives. Chem. Rev. 2020, 120, 2879–2949.

[7]

Xin, N.; Guan, J. X.; Zhou, C. G.; Chen, X. J. N.; Gu, C. H.; Li, Y.; Ratner, M. A.; Nitzan, A.; Stoddart, J. F.; Guo, X. F. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 2019, 1, 211–230.

[8]

Nozaki, D.; Cuniberti, G. Silicon-based molecular switch junctions. Nano Res. 2009, 2, 648–659.

[9]
Chen, H. L.; Stoddart, J. F. From molecular to supramolecular electronics. Nat. Rev. Mater., in press, DOI: 10.1038/s41578-021-00302-2.
[10]

Jia, C. C.; Migliore, A.; Xin, N.; Huang, S. Y.; Wang, J. Y.; Yang, Q.; Wang, S. P.; Chen, H. L.; Wang, D. M.; Feng, B. Y. et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 2016, 352, 1443–1445.

[11]

Roldan, D.; Kaliginedi, V.; Cobo, S.; Kolivoska, V.; Bucher, C.; Hong, W. J.; Royal, G.; Wandlowski, T. Charge transport in photoswitchable dimethyldihydropyrene-type single-molecule junctions. J. Am. Chem. Soc. 2013, 135, 5974–5977.

[12]

Tam, E. S.; Parks, J. J.; Shum, W. W.; Zhong, Y. W.; Santiago-Berríos, M. E. B.; Zheng, X.; Yang, W. T.; Chan, G. K. L.; Abruña, H. D.; Ralph, D. C. Single-molecule conductance of pyridine-terminated dithienylethene switch molecules. ACS Nano 2011, 5, 5115–5123.

[13]

Chen, X. P.; Roemer, M.; Yuan, L.; Du, W.; Thompson, D.; del Barco, E.; Nijhuis, C. A. Molecular diodes with rectification ratios exceeding 105 driven by electrostatic interactions. Nat. Nanotechnol. 2017, 12, 797–803.

[14]

Atesci, H.; Kaliginedi, V.; Celis Gil, J. A.; Ozawa, H.; Thijssen, J. M.; Broekmann, P.; Haga, M. A.; van der Molen, S. J. Humidity-controlled rectification switching in ruthenium-complex molecular junctions. Nat. Nanotechnol. 2018, 13, 117–121.

[15]

Kushmerick, J. Molecular transistors scrutinized. Nature 2009, 462, 994–995.

[16]

Jia, C. C.; Famili, M.; Carlotti, M.; Liu, Y.; Wang, P. Q.; Grace, I. M.; Feng, Z. Y.; Wang, Y. L.; Zhao, Z. P.; Ding, M. N. et al. Quantum interference mediated vertical molecular tunneling transistors. Sci. Adv. 2018, 4, eaat8237.

[17]

Bai, J.; Daaoub, A.; Sangtarash, S.; Li, X. H.; Tang, Y. X.; Zou, Q.; Sadeghi, H.; Liu, S.; Huang, X. J.; Tan, Z. B. et al. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat. Mater. 2019, 18, 364–369.

[18]

Chen, L. J.; Feng, A. N.; Wang, M. N.; Liu, J. Y.; Hong, W. J.; Guo, X. F.; Xiang, D. Towards single-molecule optoelectronic devices. Sci. China Chem. 2018, 61, 1368–1384.

[19]

Caneva, S.; Gehring, P.; García-Suárez, V. M.; García-Fuente, A.; Stefani, D.; Olavarria-Contreras, I. J.; Ferrer, J.; Dekker, C.; van der Zant, H. S. J. Mechanically controlled quantum interference in graphene break junctions. Nat. Nanotechnol. 2018, 13, 1126–1131.

[20]

Liu, J. Y.; Huang, X. Y.; Wang, F.; Hong, W. J. Quantum interference effects in charge transport through single-molecule junctions: Detection, manipulation, and application. Acc. Chem. Res. 2019, 52, 151–160.

[21]

Tang, C.; Chen, L. J.; Zhang, L. Y.; Chen, Z. X.; Li, G. P.; Yan, Z. W.; Lin, L. C.; Liu, J. Y.; Huang, L. F.; Ye, Y. L. et al. Multicenter-bond-based quantum interference in charge transport through single-molecule carborane junctions. Angew. Chem., Int. Ed. 2019, 58, 10601–10605.

[22]

Chen, Z. X.; Chen, L. J.; Li, G. P.; Chen, Y. R.; Tang, C.; Zhang, L. Y.; Liu, J. P.; Chen, L. N.; Yang, Y.; Shi, J. et al. Control of quantum interference in single-molecule junctions via Jahn-Teller distortion. Cell Rep. Phys. Sci. 2021, 2, 100329.

[23]

Cui, X. M.; Qin, F.; Lai, Y. H.; Wang, H.; Shao, L.; Chen, H. J.; Wang, J. F.; Lin, H. Q. Molecular tunnel junction-controlled high-order charge transfer plasmon and fano resonances. ACS Nano 2018, 12, 12541–12550.

[24]

Wang, K.; Vezzoli, A.; Grace, I. M.; McLaughlin, M.; Nichols, R. J.; Xu, B. Q.; Lambert, C. J.; Higgins, S. J. Charge transfer complexation boosts molecular conductance through Fermi level pinning. Chem. Sci. 2019, 10, 2396–2403.

[25]

Burzurí, E.; Yamamoto, Y.; Warnock, M.; Zhong, X.L.; Park, K.; Cornia, A.; van der Zant, H. S. J. Franck-Condon blockade in a single-molecule transistor. Nano Lett. 2014, 14, 3191–3196.

[26]

Lovat, G.; Choi, B.; Paley, D. W.; Steigerwald, M. L.; Venkataraman, L.; Roy, X. Room-temperature current blockade in atomically defined single-cluster junctions. Nat. Nanotechnol. 2017, 12, 1050–1054.

[27]

Zhao, S. Q.; Wu, Q. Q.; Pi, J. C.; Liu, J. Y.; Zheng, J. T.; Hou, S. J.; Wei, J. Y.; Li, R. H.; Sadeghi, H.; Yang, Y. et al. Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction. Sci. Adv. 2020, 6, eaba6714.

[28]

Huang, C. C.; Jevric, M.; Borges, A.; Olsen, S. T.; Hamill, J. M.; Zheng, J. T.; Yang, Y.; Rudnev, A.; Baghernejad, M.; Broekmann, P. et al. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique. Nat. Commun. 2017, 8, 15436.

[29]

Yelin, T.; Korytár, R.; Sukenik, N.; Vardimon, R.; Kumar, B.; Nuckolls, C.; Evers, F.; Tal, O. Conductance saturation in a series of highly transmitting molecular junctions. Nat. Mater. 2016, 15, 444–449.

[30]

Jia, C. C.; Guo, X. F. Molecule-electrode interfaces in molecular electronic devices. Chem. Soc. Rev. 2013, 42, 5642–5660.

[31]

Cubukcu, E.; Aydin, K.; Ozbay, E.; Foteinopoulou, S.; Soukoulis, C. M. Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. Phys. Rev. Lett. 2003, 91, 207401.

[32]

Lörtscher, E. Wiring molecules into circuits. Nat. Nanotechnol. 2013, 8, 381–384.

[33]

Prins, F.; Hayashi, T.; de Vos van Steenwijk, B. J. A.; Gao, B.; Osorio, E. A.; Muraki, K.; van der Zant, H. S. J. Room-temperature stability of Pt nanogaps formed by self-breaking. Appl. Phys. Lett. 2009, 94, 123108.

[34]

Li, Y.; Yang, C.; Guo, X. F. Single-molecule electrical detection: A promising route toward the fundamental limits of chemistry and life science. Acc. Chem. Res. 2020, 53, 159–169.

[35]

Cao, Y.; Dong, S. H.; Liu, S.; He, L.; Gan, L.; Yu, X. M.; Steigerwald, M. L.; Wu, X. S.; Liu, Z. F.; Guo, X. F. Building high-throughput molecular junctions using indented graphene point contacts. Angew. Chem., Int. Ed. 2012, 51, 12228–12232.

[36]

Prins, F.; Barreiro, A.; Ruitenberg, J. W.; Seldenthuis, J. S.; Aliaga-Alcalde, N.; Vandersypen, L. M. K.; van der Zant, H. S. J. Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 2011, 11, 4607–4611.

[37]

Guo, X. F.; Small, J. P.; Klare, J. E.; Wang, Y. L.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L.; O’Brien, S. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 2006, 311, 356–359.

[38]

Gao, L.; Li, L. L.; Wang, X. L.; Wu, P. W.; Cao, Y.; Liang, B.; Li, X.; Lin, Y. W.; Lu, Y.; Guo, X. F. Graphene-DNAzyme junctions: A platform for direct metal ion detection with ultrahigh sensitivity. Chem. Sci. 2015, 6, 2469–2473.

[39]

Xin, N.; Li, X.; Jia, C.; Gong, Y.; Li, M. L.; Wang, S. P.; Zhang, G. Y.; Yang, J. L.; Guo, X. F. Tuning charge transport in aromatic-ring single-molecule junctions via ionic-liquid gating. Angew. Chem., Int. Ed. 2018, 57, 14026–14031.

[40]

Xin, N.; Kong, X. H.; Zhang, Y. P.; Jia, C. C.; Liu, L.; Gong, Y.; Zhang, W. N.; Wang, S. P.; Zhang, G. Y.; Zhang, H. L. et al. Control of unipolar/ambipolar transport in single-molecule transistors through interface engineering. Adv. Electron. Mater. 2020, 6, 1901237.

[41]

Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 1999, 75, 301–303.

[42]

Sadeghi, H.; Mol, J. A.; Lau, C. S.; Briggs, G. A. D.; Warner, J.; Lambert, C. J. Conductance enlargement in picoscale electroburnt graphene nanojunctions. Proc. Nat. Acad. Sci. USA 2015, 112, 2658–2663.

[43]

Thomas, J. O.; Limburg, B.; Sowa, J. K.; Willick, K.; Baugh, J.; Briggs, G. A. D.; Gauger, E. M.; Anderson, H. L.; Mol, J. A. Understanding resonant charge transport through weakly coupled single-molecule junctions. Nat. Commun. 2019, 10, 4628.

[44]

Puczkarski, P.; Wu, Q. Q.; Sadeghi, H.; Hou, S. J.; Karimi, A.; Sheng, Y. W.; Warner, J. H.; Lambert, C. J.; Briggs, G. A. D.; Mol, J. A. Low-frequency noise in graphene tunnel junctions. ACS Nano 2018, 12, 9451–9460.

[45]

Wang, G.; Zeng, B. F.; Zhao, S. Q.; Qian, Q. Z.; Hong, W. J.; Yang, Y. Application of electrochemistry to single-molecule junctions: From construction to modulation. Sci. China Chem. 2019, 62, 1333–1345.

[46]

Garner, M. H.; Li, H. X.; Chen, Y.; Su, T. A.; Shangguan, Z. C.; Paley, D. W.; Liu, T. F.; Ng, F.; Li, H. X.; Xiao, S. X. et al. Comprehensive suppression of single-molecule conductance using destructive σ-interference. Nature 2018, 558, 415–419.

[47]

Xu, B. Q.; Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223.

[48]

Zhan, C.; Wang, G.; Zhang, X. G.; Li, Z. H.; Wei, J. Y.; Si, Y.; Yang, Y.; Hong, W. J.; Tian, Z. Q. Single-molecule measurement of adsorption free energy at the solid-liquid interface. Angew. Chem., Int. Ed. 2019, 58, 14534–14538.

[49]

Chen, Z. X.; Chen, L. J.; Liu, J. P.; Li, R. H.; Tang, C.; Hua, Y. H.; Chen, L. C.; Shi, J.; Yang, Y.; Liu, J.Y. et al. Modularized tuning of charge transport through highly twisted and localized single-molecule junctions. J. Phys. Chem. Lett. 2019, 10, 3453–3458.

[50]

Cai, S. N.; Deng, W. T.; Huang, F. F.; Chen, L. J.; Tang, C.; He, W. X.; Long, S. C.; Li, R. H.; Tan, Z. B.; Liu, J. Y. et al. Light-driven reversible intermolecular proton transfer at single-molecule junctions. Angew. Chem., Int. Ed. 2019, 58, 3829–3833.

[51]

Yang, Y.; Liu, J. Y.; Zheng, J. T.; Lu, M.; Shi, J.; Hong, W. J.; Yang, F. Z.; Tian, Z. Q. Promising electroplating solution for facile fabrication of Cu quantum point contacts. Nano Res. 2017, 10, 3314–3323.

[52]

Zheng, J. T.; Liu, J. Y.; Zhuo, Y. J.; Li, R. H.; Jin, X.; Yang, Y.; Chen, Z. B.; Shi, J.; Xiao, Z. Y.; Hong, W. J. et al. Electrical and SERS detection of disulfide-mediated dimerization in single-molecule benzene-1,4-dithiol junctions. Chem. Sci. 2018, 9, 5033–5038.

[53]

Zhan, C.; Wang, G.; Yi, J.; Wei, J. Y.; Li, Z. H.; Chen, Z. B.; Shi, J.; Yang, Y.; Hong, W. J.; Tian, Z. Q. Single-molecule plasmonic optical trapping. Matter 2020, 3, 1350–1360.

[54]

Liu, J. Y.; Zhao, X. T.; Zheng, J. T.; Huang, X. Y.; Tang, Y. X.; Wang, F.; Li, R. H.; Pi, J. C.; Huang, C. C.; Wang, L. et al. Transition from tunneling leakage current to molecular tunneling in single-molecule junctions. Chem 2019, 5, 390–401.

[55]

Zeng, B. F.; Wang, G.; Qian, Q. Z.; Chen, Z. X.; Zhang, X. G.; Lu, Z. X.; Zhao, S. Q.; Feng, A. N.; Shi, J.; Yang, Y. et al. Selective fabrication of single-molecule junctions by interface engineering. Small 2020, 16, 2004720.

[56]

Kim, T.; Liu, Z. F.; Lee, C.; Neaton, J. B.; Venkataraman, L. Charge transport and rectification in molecular junctions formed with carbon-based electrodes. Proc. Nat. Acad. Sci. USA 2014, 111, 10928–10932.

[57]

Rudnev, A. V.; Kaliginedi, V.; Droghetti, A.; Ozawa, H.; Kuzume, A.; Haga, M. A.; Broekmann, P.; Rungger, I. Stable anchoring chemistry for room temperature charge transport through graphite-molecule contacts. Sci. Adv. 2017, 3, e1602297.

[58]

Zhang, Q.; Liu, L. L.; Tao, S. H.; Wang, C. Y.; Zhao, C. Z.; González, C.; Dappe, Y. J.; Nichols, R. J.; Yang, L. Graphene as a promising electrode for low-current attenuation in nonsymmetric molecular junctions. Nano Lett. 2016, 16, 6534–6540.

[59]

Zhang, Q.; Tao, S. H.; Yi, R. W.; He, C. H.; Zhao, C. Z.; Su, W. T.; Smogunov, A.; Dappe, Y. J.; Nichols, R. J.; Yang, L. Symmetry effects on attenuation factors in graphene-based molecular junctions. J. Phys. Chem. Lett. 2017, 8, 5987–5992.

[60]

Jia, C. C.; Wang, J. Y.; Yao, C. J.; Cao, Y.; Zhong, Y. W.; Liu, Z. R.; Liu, Z. F.; Guo, X. F. Conductance switching and mechanisms in single-molecule junctions. Angew. Chem., Int. Ed. 2013, 52, 8666–8670.

[61]

Ullmann, K.; Coto, P. B.; Leitherer, S.; Molina-Ontoria, A.; Martín, N.; Thoss, M.; Weber, H. B. Single-molecule junctions with epitaxial graphene nanoelectrodes. Nano Lett. 2015, 15, 3512–3518.

[62]

Leitherer, S.; Coto, P. B.; Ullmann, K.; Weber, H. B.; Thoss, M. Charge transport in C60-based single-molecule junctions with graphene electrodes. Nanoscale 2017, 9, 7217–7226.

[63]

Limburg, B.; Thomas, J. O.; Holloway, G.; Sadeghi, H.; Sangtarash, S.; Hou, I. C. Y.; Cremers, J.; Narita, A.; Müllen, K.; Lambert, C. J. et al. Anchor groups for graphene-porphyrin single-molecule transistors. Adv. Funct. Mater. 2018, 28, 1803629.

[64]

Jeong, H.; Kim, D.; Xiang, D.; Lee, T. High-yield functional molecular electronic devices. ACS Nano 2017, 11, 6511–6548.

[65]

Xie, Z. T.; Bâldea, I.; Haugstad, G.; Frisbie, C. D. Mechanical deformation distinguishes tunneling pathways in molecular junctions. J. Am. Chem. Soc. 2019, 141, 497–504.

[66]

Qiu, X. K.; Ivasyshyn, V.; Qiu, L.; Enache, M.; Dong, J. J.; Rousseva, S.; Portale, G.; Stöhr, M.; Hummelen, J. C.; Chiechi, R. C. Thiol-free self-assembled oligoethylene glycols enable robust air-stable molecular electronics. Nat. Mater. 2020, 19, 330–337.

[67]

Han, B.; Li, Y.; Ji, X.; Song, X.; Ding, S.; Li, B.; Khalid, H.; Zhang, Y.; Xu, X.; Tian, L. et al. Systematic modulation of charge transport in molecular devices through facile control of molecule-electrode coupling using a double self-assembled monolayer nanowire junction. J. Am. Chem. Soc. 2020, 142, 9708–9717.

[68]

Xie, Z. T.; Bâldea, I.; Oram, S.; Smith, C. E.; Frisbie, C. D. Effect of heteroatom substitution on transport in alkanedithiol-based molecular tunnel junctions: Evidence for universal behavior. ACS Nano 2017, 11, 569–578.

[69]

O'Driscoll, L. J.; Wang, X. T.; Jay, M.; Batsanov, A. S.; Sadeghi, H.; Lambert, C. J.; Robinson, B. J.; Bryce, M. R. Carbazole-based tetrapodal anchor groups for gold surfaces: Synthesis and conductance properties. Angew. Chem., Int. Ed. 2020, 59, 882–889.

[70]

Long, B.; Manning, M.; Burke, M.; Szafranek, B. N.; Visimberga, G.; Thompson, D.; Greer, J. C.; Povey, I. M.; MacHale, J.; Lejosne, G. et al. Non-covalent functionalization of graphene using self-assembly of alkane-amines. Adv. Funct. Mater. 2012, 22, 717–725.

[71]

Wang, G.; Kim, Y.; Choe, M.; Kim, T. W.; Lee, T. A new approach for molecular electronic junctions with a multilayer graphene electrode. Adv. Mater. 2011, 23, 755–760.

[72]

Li, T.; Hauptmann, J. R.; Wei, Z. M.; Petersen, S.; Bovet, N.; Vosch, T.; Nygård, J.; Hu, W. P.; Liu, Y. Q.; Bjørnholm, T. et al. Solution-processed ultrathin chemically derived graphene films as soft top contacts for solid-state molecular electronic junctions. Adv. Mater. 2012, 24, 1333–1339.

[73]

Kühnel, M.; Petersen, S. V.; Hviid, R.; Overgaard, M. H.; Laursen, B. W.; Nørgaard, K. Monolayered graphene oxide as a low contact resistance protection layer in alkanethiol solid-state devices. J. Phys. Chem. C 2018, 122, 9731–9737.

[74]

Nerngchamnong, N.; Yuan, L.; Qi, D. C.; Li, J.; Thompson, D.; Nijhuis, C. A. The role of van der Waals forces in the performance of molecular diodes. Nat. Nanotechnol. 2013, 8, 113–118.

[75]

Baghbanzadeh, M.; Belding, L.; Yuan, L.; Park, J.; Al-Sayah, M. H.; Bowers, C. M.; Whitesides, G. M. Dipole-induced rectification across AgTS/SAM//Ga2O3/EGaIn junctions. J. Am. Chem. Soc. 2019, 141, 8969–8980.

[76]

Baghbanzadeh, M.; Pieters, P. F.; Yuan, L.; Collison, D.; Whitesides, G. M. The rate of charge tunneling in EGaIn junctions is not sensitive to halogen substituents at the self-assembled monolayer//Ga2O3 interface. ACS Nano 2018, 12, 10221–10230.

[77]

Kumar, S.; van Herpt, J. T.; Gengler, R. Y. N.; Feringa, B. L.; Rudolf, P.; Chiechi, R. C. Mixed monolayers of spiropyrans maximize tunneling conductance switching by photoisomerization at the molecule-electrode interface in EGaIn junctions. J. Am. Chem. Soc. 2016, 138, 12519–12526.

[78]

Zhang, X.; Li, T. Molecular-scale electronics: From device fabrication to functionality. Chin. Chem. Lett. 2017, 28, 2058–2064.

[79]

Kong, G. D.; Byeon, S. E.; Park, S.; Song, H.; Kim, S. Y.; Yoon, H. J. Mixed molecular electronics: Tunneling behaviors and applications of mixed self-assembled monolayers. Adv. Electron. Mater. 2020, 6, 1901157.

[80]

Seo, S.; Min, M.; Lee, S. M.; Lee, H. Photo-switchable molecular monolayer anchored between highly transparent and flexible graphene electrodes. Nat. Commun. 2013, 4, 1920.

[81]

Li, B.; Famili, M.; Pensa, E.; Grace, I.; Long, N. J.; Lambert, C.; Albrecht, T.; Cohen, L. F. Cross-plane conductance through a graphene/molecular monolayer/Au sandwich. Nanoscale 2018, 10, 19791–19798.

[82]

Chiechi, R. C.; Weiss, E. A.; Dickey, M. D.; Whitesides, G. M. Eutectic gallium-indium (EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers. Angew. Chem., Int. Ed. 2007, 47, 142–144.

[83]

Dickey, M. D.; Chiechi, R. C.; Larsen, R. J.; Weiss, E. A.; Weitz, D. A.; Whitesides, G. M. Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 2008, 18, 1097–1104.

[84]

Kong, G. D.; Song, H.; Yoon, S.; Kang, H. G.; Chang, R.; Yoon, H. J. Interstitially mixed self-assembled monolayers enhance electrical stability of molecular junctions. Nano Lett. 2021, 21, 3162–3169.

[85]

Song, P.; Sangeeth, C. S. S.; Thompson, D.; Du, W.; Loh, K. P.; Nijhuis, C. A. Noncovalent self-assembled monolayers on graphene as a highly stable platform for molecular tunnel junctions. Adv. Mater. 2016, 28, 631–639.

[86]

El Abbassi, M.; Sangtarash, S.; Liu, X. S.; Perrin, M. L.; Braun, O.; Lambert, C.; van der Zant, H. S. J.; Yitzchaik, S.; Decurtins, S.; Liu, S. X. et al. Robust graphene-based molecular devices. Nat. Nanotechnol. 2019, 14, 957–961.

[87]

Song, P.; Guerin, S.; Tan, S. J. R.; Annadata, H. V.; Yu, X. J.; Scully, M.; Han, Y. M.; Roemer, M.; Loh, K. P.; Thompson, D. et al. Stable molecular diodes based on π−π interactions of the molecular frontier orbitals with graphene electrodes. Adv. Mater. 2018, 30, 1706322.

[88]

Ai, Y.; Kovalchuk, A.; Qiu, X. K.; Zhang, Y. X.; Kumar, S.; Wang, X. T.; Kühnel, M.; Nørgaard, K.; Chiechi, R. C. In-place modulation of rectification in tunneling junctions comprising self-assembled monolayers. Nano Lett. 2018, 18, 7552–7559.

[89]

Wu, Q. Q.; Hou, S. J.; Sadeghi, H.; Lambert, C. J. A single-molecule porphyrin-based switch for graphene nano-gaps. Nanoscale 2018, 10, 6524–6530.

[90]

Famili, M.; Jia, C. C.; Liu, X. S.; Wang, P. Q.; Grace, I. M.; Guo, J.; Liu, Y.; Feng, Z. Y.; Wang, Y. L.; Zhao, Z. P. et al. Self-assembled molecular-electronic films controlled by room temperature quantum interference. Chem 2019, 5, 474–484.

[91]

Jia, C. C.; Grace, I. M.; Wang, P. Q.; Almeshal, A.; Huang, Z. H.; Wang, Y. L.; Chen, P.; Wang, L. Y.; Zhou, J. Y.; Feng, Z. Y. et al. Redox control of charge transport in vertical ferrocene molecular tunnel junctions. Chem 2020, 6, 1172–1182.

[92]

Meng, L. N.; Xin, N.; Hu, C.; Wang, J. Y.; Gui, B.; Shi, J. J.; Wang, C.; Shen, C.; Zhang, G. Y.; Guo, H. et al. Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nat. Commun. 2019, 10, 1450.

[93]

Iwane, M.; Tada, T.; Osuga, T.; Murase, T.; Fujita, M.; Nishino, T.; Kiguchi, M.; Fujii, S. Controlling stacking order and charge transport in π-stacks of aromatic molecules based on surface assembly. Chem. Commun. 2018, 54, 12443–12446.

[94]

Huang, X. Y.; Tang, C.; Li, J. Q.; Chen, L. C.; Zheng, J. T.; Zhang, P.; Le, J. B.; Li, R. H.; Li, X. H.; Liu, J. Y. et al. Electric field-induced selective catalysis of single-molecule reaction. Sci. Adv. 2019, 5, eaaw3072.

[95]

Aragonès, A. C.; Haworth, N. L.; Darwish, N.; Ciampi, S.; Bloomfield, N. J.; Wallace, G. G.; Diez-Perez, I.; Coote, M. L. Electrostatic catalysis of a Diels-Alder reaction. Nature 2016, 531, 88–91.

[96]

Tang, C.; Zheng, J. T.; Ye, Y. L.; Liu, J. Y.; Chen, L. J.; Yan, Z. W.; Chen, Z. X.; Chen, L. C.; Huang, X. Y.; Bai, J. et al. Electric-field-induced connectivity switching in single-molecule junctions. iScience 2020, 23, 100770.

[97]

Dappe, Y. J.; González, C.; Cuevas, J. C. Carbon tips for all-carbon single-molecule electronics. Nanoscale 2014, 6, 6953–6958.

[98]

Tan, Z. B.; Zhang, D.; Tian, H. R.; Wu, Q. Q.; Hou, S. J.; Pi, J. C.; Sadeghi, H.; Tang, Z.; Yang, Y.; Liu, J. Y. et al. Atomically defined angstrom-scale all-carbon junctions. Nat. Commun. 2019, 10, 1748.

[99]

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

[100]

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

[101]

Margapoti, E.; Li, J.; Ceylan, Ö.; Seifert, M.; Nisic, F.; Anh, T. L.; Meggendorfer, F.; Dragonetti, C.; Palma, C. A.; Barth, J. V. et al. A 2D semiconductor-self-assembled monolayer photoswitchable diode. Adv. Mater. 2015, 27, 1426–1431.

[102]

Zheng, Y. B.; Payton, J. L.; Chung, C. H.; Liu, R.; Cheunkar, S.; Pathem, B. K.; Yang, Y.; Jensen, L.; Weiss, P. S. Surface-enhanced raman spectroscopy to probe reversibly photoswitchable azobenzene in controlled nanoscale environments. Nano Lett. 2011, 11, 3447–3452.

[103]

Shin, J.; Yang, S.; Jang, Y.; Eo, J. S.; Kim, T. W.; Lee, T.; Lee, C. H.; Wang, G. Tunable rectification in a molecular heterojunction with two-dimensional semiconductors. Nat. Commun. 2020, 11, 1412.

Nano Research
Pages 5436-5446
Cite this article:
Zhao S, Chen H, Qian Q, et al. Non-covalent interaction-based molecular electronics with graphene electrodes. Nano Research, 2023, 16(4): 5436-5446. https://doi.org/10.1007/s12274-021-3687-2
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return