Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Strong light-matter interactions involved with photons and quasiparticles are fundamentally interesting to access the wealthy many-body physics in quantum mechanics. The emerging two-dimensional (2D) semiconductors with large exciton binding energies and strong quantum confinement allow to investigate exciton-photon coupling at elevated temperatures. Here we report room- temperature formation of Bragg polaritons in monolayer semiconductor on a dielectric mirror through the exciton-Bragg photon coupling. With the negative detuning energy of ~ 30 meV, angle-resolved reflection signals reveal anti-crossing behaviors of lower and upper polariton branches at ±18° together with the Rabi splitting of 10 meV. Meanwhile, the strengthened photoluminescence appears in the lower polariton branch right below the anti-crossing angles, indicating the presence of the characteristic bottleneck effect caused by the slowing exciton-polariton energy relaxation towards the band minimum. The extracted coupling strength is between the ones of weak and distinct strong coupling regimes, where the eigenenergy splitting induced by the moderate coupling is resolvable but not large enough to fully separate two polaritonic components. Our work develops a simplified strategy to generate exciton-polaritons in 2D semiconductors and can be further extended to probe the intriguing bosonic characteristics of these quasiparticles, such as Bose-Einstein condensation, polariton lasing and superfluidity, directly at the material surfaces.
Basov, D. N.; Fogler, M. M.; De Abajo, F. J. G. Polaritons in van der waals materials. Science 2016, 354, aag1992.
Hu, F. R.; Fei, Z. Recent progress on exciton polaritons in layered transition-metal dichalcogenides. Adv. Opt. Mater. 2020, 8, 1901003.
Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226.
Deng, H.; Haug, H.; Yamamoto, Y. Exciton-polariton bose-einstein condensation. Rev. Mod. Phys. 2010, 82, 1489–1537.
Gibbs, H. M.; Khitrova, G.; Koch, S. W. Exciton-polariton light- semiconductor coupling effects. Nat. Photonics 2011, 5, 273.
Sanvitto, D.; Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 2016, 15, 1061–1073.
Byrnes, T.; Kim, N. Y.; Yamamoto, Y. Exciton-polariton condensates. Nat. Phys. 2014, 10, 803–813.
Liu, X. Z.; Galfsky, T.; Sun, Z.; Xia, F. N.; Lin, E. C.; Lee, Y. H.; Kéna-Cohen, S.; Menon, V. M. Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photonics. 2015, 9, 30–34.
Flatten, L. C.; He, Z.; Coles, D. M.; Trichet, A. A. P.; Powell, A. W.; Taylor, R. A.; Warner, J. H.; Smith, J. M. Room-temperature exciton- polaritons with two-dimensional WS2. Sci. Rep. 2016, 6, 33134.
Lundt, N.; Klembt, S.; Cherotchenko, E.; Betzold, S.; Iff, O.; Nalitov, A. V.; Klaas, M.; Dietrich, C. P.; Kavokin, A. V.; Höfling, S. et al. Room-temperature tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat. Commun. 2016, 7, 13328.
Sun, Z.; Gu, J.; Ghazaryan, A.; Shotan, Z.; Considine, C. R.; Dollar, M.; Chakraborty, B.; Liu, X. Z.; Ghaemi, P.; Kéna-Cohen, S. et al. Optical control of room-temperature valley polaritons. Nat. Photonics 2017, 11, 491–496.
Dufferwiel, S.; Lyons, T. P.; Solnyshkov, D. D.; Trichet, A. A. P.; Withers, F.; Schwarz, S.; Malpuech, G.; Smith, J. M.; Novoselov, K. S.; Skolnick, M. S. et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photonics 2017, 11, 497–501.
Chen, Y. J.; Cain, J. D.; Stanev, T. K.; Dravid, V. P.; Stern, N. P. Valley-polarized exciton–polaritons in a monolayer semiconductor. Nat. Photonics 2017, 11, 431–435.
Dufferwiel, S.; Schwarz, S.; Withers, F.; Trichet, A. A. P.; Li, F.; Sich, M.; Del Pozo-Zamudio, O.; Clark, C.; Nalitov, A.; Solnyshkov, D. D. et al. Exciton–polaritons in van der waals heterostructures embedded in tunable microcavities. Nat. Commun. 2015, 6, 8579.
Lundt, N.; Nagler, P.; Nalitov, A.; Klembt, S.; Wurdack, M.; Stoll, S.; Harder, T. H.; Betzold, S.; Baumann, V.; Kavokin, A. V. et al. Valley polarized relaxation and upconversion luminescence from tamm- plasmon trion–polaritons with a MoSe2 monolayer. 2D Mater. 2017, 4, 025096.
Dhara, S.; Chakraborty, C.; Goodfellow, K. M.; Qiu, L.; O'Loughlin, T. A.; Wicks, G. W.; Bhattacharjee, S.; Vamivakas, A. N. Anomalous dispersion of microcavity trion-polaritons. Nat. Phys. 2018, 14, 130–133.
Richard, M.; Romestain, R.; André, R.; Dang, L. S. Consequences of strong coupling between excitons and microcavity leaky modes. Appl. Phys. Lett. 2005, 86, 071916.
Christopoulos, S.; Von Högersthal, G. B. H.; Grundy, A. J. D.; Lagoudakis, P. G.; Kavokin, A. V.; Baumberg, J. J.; Christmann, G.; Butté, R.; Feltin, E.; Carlin, J. F. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 2007, 98, 126405.
Faure, S.; Brimont, C.; Guillet, T.; Bretagnon, T.; Gil, B.; Médard, F.; Lagarde, D.; Disseix, P.; Leymarie, J.; Zúñiga-Pérez, J. et al. Relaxation and emission of bragg-mode and cavity-mode polaritons in a zno microcavity at room temperature. Appl. Phys. Lett. 2009, 95, 121102.
Goldberg, D.; Deych, L. I.; Lisyansky, A. A.; Shi, Z.; Menon, V. M.; Tokranov, V.; Yakimov, M.; Oktyabrsky, S. Exciton-lattice polaritons in multiple-quantum-well-based photonic crystals. Nat. Photonics 2009, 3, 662–666.
Askitopoulos, A.; Mouchliadis, L.; Iorsh, I.; Christmann, G.; Baumberg, J. J.; Kaliteevski, M. A.; Hatzopoulos, Z.; Savvidis, P. G. Bragg polaritons: Strong coupling and amplification in an unfolded microcavity. Phys. Rev. Lett. 2011, 106, 076401.
Cong, C. X.; Shang, J. Z.; Wang, Y. L.; Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 2018, 6, 1700767.
Shang, J. Z.; Shen, X. N.; Cong, C. X.; Peimyoo, N.; Cao, B. C.; Eginligil, M.; Yu, T. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 2015, 9, 647–655.
Plechinger, G.; Nagler, P.; Kraus, J.; Paradiso, N.; Strunk, C.; Schüller, C.; Korn, T. Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solidi-R 2015, 9, 457–461.
Hopfield, J. J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 1958, 112, 1555–1567.
Zhang, L.; Gogna, R.; Burg, W.; Tutuc, E.; Deng, H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun. 2018, 9, 713.
Tassone, F.; Piermarocchi, C.; Savona, V.; Quattropani, A.; Schwendimann, P. Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons. Phys. Rev. B 1997, 56, 7554–7563.
Richard, M.; Kasprzak, J.; André, R.; Romestain, R.; Dang, L. S.; Malpuech, G.; Kavokin, A. Experimental evidence for nonequilibrium bose condensation of exciton polaritons. Phys. Rev. B 2005, 72, 201301(R).
Plumhof, J. D.; Stöferle, T.; Mai, L. J.; Scherf, U.; Mahrt, R. F. Room-temperature bose–einstein condensation of cavity exciton– polaritons in a polymer. Nat. Mater. 2014, 13, 247–252.
Flatten, L. C.; Coles, D. M.; He, Z. Y.; Lidzey, D. G.; Taylor, R. A.; Warner, J. H.; Smith, J. M. Electrically tunable organic–inorganic hybrid polaritons with monolayer WS2. Nat. Commun. 2017, 8, 14097.
Sidler, M.; Back, P.; Cotlet, O.; Srivastava, A.; Fink, T.; Kroner, M.; Demler, E.; Imamoglu, A. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 2017, 13, 255–261.
Barachati, F.; Fieramosca, A.; Hafezian, S.; Gu, J.; Chakraborty, B.; Ballarini, D.; Martinu, L.; Menon, V.; Sanvitto, D.; Kéna-Cohen, S. Interacting polariton fluids in a monolayer of tungsten disulfide. Nat. Nanotechnol. 2018, 13, 906–909.
Christmann, G.; Butté, R.; Feltin, E.; Mouti, A.; Stadelmann, P. A.; Castiglia, A.; Carlin, J. F.; Grandjean, N. Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime. Phys. Rev. B 2008, 77, 085310.
Biancalana, F.; Mouchliadis, L.; Creatore, C.; Osborne, S.; Langbein, W. Microcavity polaritonlike dispersion doublet in resonant Bragg gratings. Phys. Rev. B 2009, 80, 121306(R).
Lagois, J.; Fischer, B. Experimental observation of surface exciton polaritons. Phys. Rev. Lett. 1976, 36, 680–683.
Hirabayashi, I.; Tokura, Y.; Koda, T. Surface exciton polariton in ZnO. J. Phys. Soc. Jpn. 1982, 51, 2934–2946.
Lagois, J.; Fischer, B. Dispersion theory of surface-exciton polaritons. Phys. Rev. B 1978, 17, 3814–3824.
Khitrova, G.; Gibbs, H. M.; Jahnke, F.; Kira, M.; Koch, S. W. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys. 1999, 71, 1591–1639.
Reithmaier, J. P.; Sęk, G.; Löffler, A.; Hofmann, C.; Kuhn, S.; Reitzenstein, S.; Keldysh, L. V.; Kulakovskii, V. D.; Reinecke, T. L.; Forchel, A. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 2004, 432, 197–200.
Andreani, L. C.; Panzarini, G.; Gérard, J. M. Strong-coupling regime for quantum boxes in pillar microcavities: Theory. Phys. Rev. B 1999, 60, 13276–13279.
Khitrova, G.; Gibbs, H. M.; Kira, M.; Koch, S. W.; Scherer, A. Vacuum Rabi splitting in semiconductors. Nat. Phys. 2006, 2, 81–90.