Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Two-dimensional (2D) magnetic crystals have been extensively explored thanks to their potential applications in spintronics, valleytronics, and topological superconductivity. Here we report a novel monolayer magnet, namely puckered pentagonal VTe2 (PP-VTe2), intriguing atomic and electronic structures of which were firmly validated from first-principles calculations. The PP-VTe2 exhibits strong intrinsic ferromagnetism and semiconducting property distinct from the half-metallic bulk pyrite VTe2 (BP-VTe2) phase. An unusual magnetic anisotropy with large magnetic exchange energies is found. More interestingly, the multiferroic coupling between its 2D ferroelasticity and in-plane magnetization is further identified in PP-VTe2, lending it unprecedented controllability with external strains and electric fields. Serving as an emergent 2D ferromagnetic semiconductor with a novel crystal structure, monolayer PP-VTe2 provides an ideal platform for exploring exotic crystalline and spin configurations in low-dimensional systems.
Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.
Avsar, A.; Ochoa, H.; Guinea, F.; Özyilmaz, B.; van Wees, B. J.; Vera-Marun, I. J. Colloquium: Spintronics in graphene and other two-dimensional materials. Rev. Mod. Phys. 2020, 92, 021003.
Lin, X. Y.; Yang, W.; Wang, K. L.; Zhao, W. S. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2019, 2, 274–283.
Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.
Jimenez, V. O.; Kalappattil, V.; Eggers, T.; Bonilla, M.; Kolekar, S.; Huy, P. T.; Batzill, M.; Phan, M. H. A magnetic sensor using a 2D van der Waals ferromagnetic material. Sci. Rep. 2020, 10, 4789.
Shen, J. X.; Shang, D. S.; Chai, Y. S.; Wang, S. G.; Shen, B. G.; Sun, Y. Mimicking synaptic plasticity and neural network using memtranstors. Adv. Mater. 2018, 30, 1706717.
Liu, C. S.; Chen, H. W.; Wang, S. Y.; Liu, Q.; Jiang, Y. G.; Zhang, D. W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557.
Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.
Mak, K. F.; Shan, J.; Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 2019, 1, 646–661.
Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.
Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.
Li, B.; Wan, Z.; Wang, C.; Chen, P.; Huang, B.; Cheng, X.; Qian, Q.; Li, J.; Zhang, Z. W.; Sun, G. Z. et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 2021, 20, 818–825.
Sun, X. D.; Li, W. Y.; Wang, X.; Sui, Q.; Zhang, T. Y.; Wang, Z.; Liu, L.; Li, D.; Feng, S.; Zhong, S. Y. et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res. 2020, 13, 3358–3363.
Thiel, L.; Wang, Z.; Tschudin, M. A.; Rohner, D.; Gutiérrez- Lezama, I.; Ubrig, N.; Gibertini, M.; Giannini, E.; Morpurgo, A. F.; Maletinsky, P. Probing magnetism in 2D materials at the nanoscale with single- spin microscopy. Science 2019, 364, 973–976.
Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro- Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.
Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Mak, K. F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553.
Chen, W. J.; Sun, Z. Y.; Wang, Z. J.; Gu, L. H.; Xu, X. D.; Wu, S. W.; Gao, C. L. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 2019, 366, 983–987.
Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room- temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293.
Liu, Z. L.; Wu, X.; Shao, Y.; Qi, J.; Cao, Y.; Huang, L.; Liu, C.; Wang, J. O.; Zheng, Q.; Zhu, Z. L. et al. Epitaxially grown monolayer VSe2: An air-stable magnetic two-dimensional material with low work function at edges. Sci. Bull. 2018, 63, 419–425.
Yu, W.; Li, J.; Herng, T. S.; Wang, Z. S.; Zhao, X. X.; Chi, X.; Fu, W.; Abdelwahab, I.; Zhou, J.; Dan, J. D. et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 2019, 31, 1903779.
Coelho, P. M.; Nguyen Cong, K.; Bonilla, M.; Kolekar, S.; Phan, M. H.; Avila, J.; Asensio, M. C.; Oleynik, I. I.; Batzill, M. Charge density wave state suppresses ferromagnetic ordering in VSe2 monolayers. J. Phys. Chem. C 2019, 123, 14089–14096.
Zhang, W.; Zhang, L.; Wong, P. K. J.; Yuan, J. R.; Vinai, G.; Torelli, P.; van der Laan, G.; Feng, Y. P.; Wee, A. T. S. Magnetic transition in monolayer VSe2 via interface hybridization. ACS Nano 2019, 13, 8997–9004.
Liu, H. T.; Xue, Y. Z.; Shi, J. A.; Guzman, R. A.; Zhang, P. P.; Zhou, Z.; He, Y. G.; Bian, C.; Wu, L. M.; Ma, R. S. et al. Observation of the kondo effect in multilayer single-crystalline VTe2 nanoplates. Nano Lett. 2019, 19, 8572–8580.
Liu, M. Z.; Wu, C. W.; Liu, Z. Z.; Wang, Z. Q.; Yao, D. X.; Zhong, D. Y. Multimorphism and gap opening of charge-density-wave phases in monolayer VTe2. Nano Res. 2020, 13, 1733–1738.
Coelho, P. M.; Lasek, K.; Nguyen Cong, K.; Li, J. F.; Niu, W.; Liu, W. Q.; Oleynik, I. I.; Batzill, M. Monolayer modification of VTe2 and its charge density wave. J. Phys. Chem. Lett. 2019, 10, 4987–4993.
Wang, Y.; Ren, J. H.; Li, J. H.; Wang, Y. J.; Peng, H. N.; Yu, P.; Duan, W. H.; Zhou, S. Y. Evidence of charge density wave with anisotropic gap in a monolayer VTe2 film. Phys. Rev. B 2019, 100, 241404(R).
Miao, G. Y.; Xue, S. W.; Li, B.; Lin, Z. J.; Liu, B.; Zhu, X. T.; Wang, W. H.; Guo, J. D. Real-space investigation of the charge density wave in VTe2 monolayer with broken rotational and mirror symmetries. Phys. Rev. B 2020, 101, 035407.
Oyedele, A. D.; Yang, S. Z.; Liang, L. B.; Puretzky, A. A.; Wang, K.; Zhang, J. J.; Yu, P.; Pudasaini, P. R.; Ghosh, A. W.; Liu, Z. et al. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017, 139, 14090–14097.
Li, E.; Wang, D. F.; Fan, P.; Zhang, R. Z.; Zhang, Y. Y.; Li, G.; Mao, J. H.; Wang, Y. L.; Lin, X.; Du, S. X. et al. Construction of bilayer PdSe2 on epitaxial graphene. Nano Res. 2018, 11, 5858–5865.
Lu, L. S.; Chen, G. H.; Cheng, H. Y.; Chuu, C. P.; Lu, K. C.; Chen, C. H.; Lu, M. Y.; Chuang, T. H.; Wei, D. H.; Chueh, W. C. et al. Layer- dependent and in-plane anisotropic properties of low-temperature synthesized few-layer PdSe2 single crystals. ACS Nano 2020, 14, 4963–4972.
Lin, J. H.; Zuluaga, S.; Yu, P.; Liu, Z.; Pantelides, S. T.; Suenaga, K. Novel Pd2Se3 Two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett. 2017, 119, 016101.
Puretzky, A. A.; Oyedele, A. D.; Xiao, K.; Haglund, A. V.; Sumpter, B. G.; Mandrus, D.; Geohegan, D. B.; Liang, L. B. Anomalous interlayer vibrations in strongly coupled layered PdSe2. 2D Mater. 2018, 5, 035016.
Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I. E.; Cepellotti, A.; Pizzi, G. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246–252.
Li, X. X.; Yang, J. L. CrXTe3 (X = Si, Ge) Nanosheets: Two dimensional intrinsic ferromagnetic semiconductors. J. Mater. Chem. C 2014, 2, 7071–7076.
Lutfalla, S.; Shapovalov, V.; Bell, A. T. Calibration of the DFT/ GGA+U Method for determination of reduction energies for transition and rare earth metal oxides of Ti, V, Mo, and Ce. J. Chem. Theory Comput. 2011, 7, 2218–2223.
Li, X. Y.; Meng, S.; Sun, J. T. Emergence of d-orbital magnetic dirac fermions in a MoS2 monolayer with squared pentagon structure. Phys. Rev. B 2020, 101, 144409.
Zhu, Y.; Kong, X. H.; Rhone, T. D.; Guo, H. Systematic search for two-dimensional ferromagnetic materials. Phys. Rev. Mater. 2018, 2, 081001(R).
Lu, X. B.; Fei, R. X.; Yang, L. Curie temperature of emerging two- dimensional magnetic structures. Phys. Rev. B 2019, 100, 205409.
Wang, C.; Zhou, X. Y.; Zhou, L. W.; Tong, N. H.; Lu, Z. Y.; Ji, W. A family of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X = Cl, Br, I; C = S, Se, Te). Sci. Bull. 2019, 64, 293–300.
Sun, Y. J.; Zhuo, Z. W.; Wu, X. J. Bipolar magnetism in a two- dimensional NbS2 semiconductor with high curie temperature. J. Mater. Chem. C 2018, 6, 11401–11406.
Jiang, Z.; Wang, P.; Xing, J. P.; Jiang, X.; Zhao, J. J. Screening and design of novel 2D ferromagnetic materials with high curie temperature above room temperature. ACS Appl. Mater. Interfaces 2018, 10, 39032–39039.
Guo, Y. L.; Wang, B.; Zhang, X. W.; Yuan, S. J.; Ma, L.; Wang, J. L. Magnetic two-dimensional layered crystals meet with ferromagnetic semiconductors. InfoMat 2020, 2, 639–655.
Li, X. X.; Yang, J. L. Toward room-temperature magnetic semiconductors in two-dimensional ferrimagnetic organometallic lattices. J. Phys. Chem. Lett. 2019, 10, 2439–2444.
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.
Wu, M. H.; Zeng, X. C. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett. 2016, 16, 3236–3241.
Zhang, G. H.; Qin, H. J.; Chen, J.; He, X. Y.; Lu, L.; Li, Y. Q.; Wu, K. H. Growth of topological insulator Bi2Se3 thin films on SrTiO3 with large tunability in chemical potential. Adv. Funct. Mater. 2011, 21, 2351–2355.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Le Page, Y.; Saxe, P. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B 2002, 65, 104104.