Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Sunlight-driven activation of molecular oxygen (O2) for organic oxidation reactions offers an appealing strategy to cut down the reliance on fossil fuels in chemical industry, yet it remains a great challenge to simultaneously tailor the charge kinetics and promote reactant chemisorption on semiconductor catalysts for enhanced photocatalytic performance. Herein, we report iron sites immobilized on defective BiOBr nanosheets as an efficient and selective photocatalyst for activation of O2 to singlet oxygen (1O2). These Fe3+ species anchored by oxygen vacancies can not only facilitate the separation and migration of photogenerated charge carrier, but also serve as active sites for effective adsorption of O2. Moreover, low-temperature phosphorescence spectra combined with X-ray photoelectron spectroscopy (XPS) and electronic paramagnetic resonance (EPR) spectra under illumination reveal that the Fe species can boost the quantum yield of excited triplet state and accelerate the energy transfer from excited triplet state to adsorbed O2 via a chemical loop of Fe3+/Fe2+, thereby achieving highly efficient and selective generation of 1O2. As a result, the versatile iron sites on defective BiOBr nanosheets contributes to near-unity conversion rate and selectivity in both aerobic oxidative coupling of amines to imines and sulfoxidation of organic sulfides. This work highlights the significant role of metal sites anchored on semiconductors in regulating the charge/energy transfer during the heterogeneous photocatalytic process, and provides a new angle for designing high-performance photocatalysts.
Shih, C. F.; Zhang, T.; Li, J. H.; Bai, C. L. Powering the future with liquid sunshine. Joule 2018, 2, 1925-1949.
Beranek, R. Selectivity of chemical conversions: Do light-driven photoelectrocatalytic processes hold special promise? Angew. Chem., Int. Ed. 2019, 58, 16724-16729.
Shi, M.; Li, G. N.; Li, J. M.; Jin, X.; Tao, X. P.; Zeng, B.; Pidko, E. A.; Li, R. G.; Li, C. Intrinsic facet-dependent reactivity of well- defined BiOBr nanosheets on photocatalytic water splitting. Angew. Chem., Int. Ed. 2020, 59, 6590-6595.
Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting-a critical review. Energy Environ. Sci. 2015, 8, 731-759.
Wang, Z.; Inoue, Y.; Hisatomi, T.; Ishikawa, R.; Wang, Q.; Takata, T.; Chen, S. S.; Shibata, N.; Ikuhara, Y.; Domen, K. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 2018, 1, 756-763.
Wolff, C. M.; Frischmann, P. D.; Schulze, M.; Bohn, B. J.; Wein, R.; Livadas, P.; Carlson, M. T.; Jäckel, F.; Feldmann, J.; Würthner, F. et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 2018, 3, 862-869.
Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor- based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.
Liu, D. C.; Zhong, D. C.; Lu, T. B. Non-noble metal-based molecular complexes for CO2 reduction: From the ligand design perspective. EnergyChem 2020, 2, 100034.
He, B. C.; Zhang, C.; Luo, P. P.; Li, Y.; Lu, T. B. Integrating Z-scheme heterojunction of Co1-C3N4@α-Fe2O3 for efficient visible-light-driven photocatalytic CO2 reduction. Green Chem. 2020, 22, 7552-7559.
Long, R.; Li, Y.; Liu, Y.; Chen, S. M.; Zheng, X. S.; Gao, C.; He, C. H.; Chen, N. S.; Qi, Z. M.; Song, L. et al. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc. 2017, 139, 4486-4492.
Medford, A. J.; Hatzell, M. C. Photon-driven nitrogen fixation: Current progress, thermodynamic considerations, and future outlook. ACS Catal. 2017, 7, 2624-2643.
Li, H.; Shang, J.; Ai, Z. H.; Zhang, L. Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J. Am. Chem. Soc. 2015, 137, 6393-6399.
Wang, L.; Xia, M. K.; Wang, H.; Huang, K. F.; Qian, C. X.; Maravelias, C. T.; Ozin, G. A. Greening ammonia toward the solar ammonia refinery. Joule 2018, 2, 1055-1074.
Li, H.; Qin, F.; Yang, Z. P.; Cui, X. M.; Wang, J. F.; Zhang, L. Z. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J. Am. Chem. Soc. 2017, 139, 3513-3521.
Kou, J. H.; Lu, C. H.; Wang, J.; Chen, Y. K.; Xu, Z. Z.; Varma, R. S. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem. Rev. 2017, 117, 1445-1514.
Lang, X. J.; Chen, X. D.; Zhao, J. C. Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 2014, 43, 473-486.
Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302-11336.
Ji, J. H.; Yan, Q. Y.; Yin, P. C.; Mine, S.; Matsuoka, M.; Xing, M. Y. Defects on CoS2−x: tuning redox reactions for sustainable degradation of organic pollutants. Angew. Chem., Int. Ed. 2021, 60, 2903-2908.
Wang, H.; Chen, S. C.; Yong, D. Y.; Zhang, X. D.; Li, S.; Shao, W.; Sun, X. S.; Pan, B. C.; Xie, Y. Giant electron-hole interactions in confined layered structures for molecular oxygen activation. J. Am. Chem. Soc. 2017, 139, 4737-4742.
Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893-2939.
Tong, X. J.; Cao, X.; Han, T.; Cheong, W. C.; Lin, R.; Chen, Z.; Wang, D. S.; Chen, C.; Peng, Q.; Li, Y. D. Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Res. 2019, 12, 1625-1630.
Zhang, N.; Li, X. Y.; Ye, H. C.; Chen, S. M.; Ju, H. X.; Liu, D. B.; Lin, Y.; Ye, W.; Wang, C. M.; Xu, Q. et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 2016, 138, 8928-8935.
Mao, C. L.; Li, H.; Gu, H. G.; Wang, J. X.; Zou, Y. J.; Qi, G. D.; Xu, J.; Deng, F.; Shen, W. J.; Li, J. et al. Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light. Chem 2019, 5, 2702-2717.
Cheng, H. F.; Kamegawa, T.; Mori, K.; Yamashita, H. Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light. Angew. Chem., Int. Ed. 2014, 53, 2910-2914.
Di, J.; Zhu, C.; Ji, M. X.; Duan, M. L.; Long, R.; Yan, C.; Gu, K. Z.; Xiong, J.; She, Y. B.; Xia, J. X. et al. Defect-rich Bi12O17Cl2 nanotubes self-accelerating charge separation for boosting photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 14847-14851.
Freund, H. J. Oxygen activation on oxide surfaces: A perspective at the atomic level. Catal. Today 2014, 238, 2-9.
Oh, S.; Ha, H.; Choi, H.; Jo, C.; Cho, J.; Choi, H.; Ryoo, R.; Kim, H. Y.; Park, J. Y. Oxygen activation on the interface between Pt nanoparticles and mesoporous defective TiO2 during CO oxidation. J. Chem. Phys. 2019, 151, 234716.
Huang, X. Y.; Groves, J. T. Oxygen activation and radical transformations in heme proteins and metalloporphyrins. Chem. Rev. 2018, 118, 2491-2553.
Snyder, B. E. R.; Bols, M. L.; Schoonheydt, R. A.; Sels, B. F.; Solomon, E. I. Iron and copper active sites in zeolites and their correlation to metalloenzymes. Chem. Rev. 2018, 118, 2718-2768.
Yu, H. G.; Irie, H.; Shimodaira, Y.; Hosogi, Y.; Kuroda, Y.; Miyauchi, M.; Hashimoto, K. An efficient visible-light-sensitive Fe(Ⅲ)-grafted TiO2 photocatalyst. J. Phys. Chem. C 2010, 114, 16481-16487.
Wang, D. K.; Huang, R. K.; Liu, W. J.; Sun, D. R.; Li, Z. H. Fe-based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 2014, 4, 4254-4260.
Wang, H.; Yong, D. Y.; Chen, S. C.; Jiang, S. L.; Zhang, X. D.; Shao, W.; Zhang, Q.; Yan, W. S.; Pan, B. C.; Xie, Y. Oxygen- vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation. J. Am. Chem. Soc. 2018, 140, 1760-1766.
Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.
Xu, M.; Yao, S. Y.; Rao, D. M.; Niu, Y. M.; Liu, N.; Peng, M.; Zhai, P.; Man, Y.; Zheng, L. R.; Wang, B. et al. Insights into interfacial synergistic catalysis over Ni@TiO2-x catalyst toward water-gas shift reaction. J. Am. Chem. Soc. 2018, 140, 11241-11251.
Kong, X. Y.; Lee, W. P. C.; Ong, W. J.; Chai, S. P.; Mohamed, A. R. Oxygen-deficient BiOBr as a highly stable photocatalyst for efficient CO2 reduction into renewable carbon-neutral fuels. ChemCatChem 2016, 8, 3074-3081.
Qiu, X. Q.; Miyauchi, M.; Yu, H. G.; Irie, H.; Hashimoto, K. Visible-light-driven Cu(Ⅱ)−(Sr1−yNay)(Ti1−xMox)O3 photocatalysts based on conduction band control and surface ion modification. J. Am. Chem. Soc. 2010, 132, 15259-15267.
Liu, W.; Cao, L. L.; Cheng, W. R.; Cao, Y. J.; Liu, X. K.; Zhang, W.; Mou, X. L.; Jin, L. L.; Zheng, X. S.; Che, W. et al. Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew. Chem., Int. Ed. 2017, 56, 9312-9317.
Cao, Y. J.; Chen, S.; Luo, Q. Q.; Yan, H.; Lin, Y.; Liu, W.; Cao, L. L.; Lu, J. L.; Yang, J. L.; Yao, T. et al. Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4 single-site photocatalyst. Angew. Chem., Int. Ed. 2017, 56, 12191-12196.
Chen, Y. F.; Li, Z. J.; Zhu, Y. B.; Sun, D. M.; Liu, X. E.; Xu, L.; Tang, Y. W. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater. 2019, 31, 1806312.
Mao, Y. S.; Wang, P. F.; Li, L. N.; Chen, Z. W.; Wang, H. T.; Li, Y.; Zhan, S. H. Unravelling the synergy between oxygen vacancies and oxygen substitution in BiO2−x for efficient molecular-oxygen activation. Angew. Chem., Int. Ed. 2020, 59, 3685-3690.
Wu, Z. H.; Liu, J.; Tian, Q. Y.; Wu, W. Efficient visible light formaldehyde oxidation with 2D p-n heterostructure of BiOBr/BiPO4 nanosheets at room temperature. ACS Sustainable Chem. Eng. 2017, 5, 5008-5017.
Bharmoria, P.; Bildirir, H.; Moth-Poulsen, K. Triplet-triplet annihilation based near infrared to visible molecular photon upconversion. Chem. Soc. Rev. 2020, 49, 6529-6554.
Graetzel, M.; Howe, R. F. Electron paramagnetic resonance studies of doped titanium dioxide colloids. J. Phys. Chem. 1990, 94, 2566-2572.
Ozaki, H.; Iwamoto, S.; Inoue, M. Marked promotive effect of iron on visible-light-induced photocatalytic activities of nitrogen- and silicon-codoped titanias. J. Phys. Chem. C 2007, 111, 17061-17066.
Liang, J. J.; Gu, C. L.; Kacher, M. L.; Foote, C. S. Chemistry of singlet oxygen. 45. Mechanism of the photooxidation of sulfides. J. Am. Chem. Soc. 1983, 105, 4717-4721.
Clennan, E. L. Persulfoxide: Key intermediate in reactions of singlet oxygen with sulfides. Acc. Chem. Res. 2001, 34, 875-884.