Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Intramolecular hydrogen bonds in a single macromolecule: Strength in high vacuum versus liquid environments

Wanhao Cai1Duo Xu2Fa Zhang1Junhao Wei1Song Lu1Linmao Qian1Zhongyuan Lu2Shuxun Cui1()
Key Laboratory of Advanced Technologies of Materials (Ministry of Education)Southwest Jiaotong UniversityChengdu610031China
State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin UniversityChangchun130023China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

As a weak non-covalent interaction, hydrogen bond (H-bond) is highly susceptible to the environmental interference. However, the direct quantification of a single H-bond under an interference-free condition is still a challenge. Herein, the intramolecular H-bond in a model system, poly(N-isopropylacrylamide), is studied in high vacuum by single-molecule atomic force microscopy and steered molecular dynamics simulations, which allows the precise quantification of H-bond strength in an interference-free state. Control experiments show that the H-bond is significantly weakened in nonpolar solvent, even if the dielectric constant is very close to vacuum. If a polar solvent is used as the environment, the H-bond will be further weaker or even broken. These results imply that for experiments in any liquid environment, the H-bond strength (ΔG) will be only ~ 50% or even less of that measured in vacuum. Further analysis shows that in liquid environments, ΔG decays in a quasi-linear way with the increase of the dielectric constant (ε). For H-bond studies in future, the result measured in vacuum can be set as the standard value, namely, the inherent strength. This approach will provide fundamental insights into the H-bond participated nano-structures and materials in different environments.

Electronic Supplementary Material

Download File(s)
12274_2021_3696_MOESM1_ESM.pdf (2.8 MB)

References

1

Sherrington, D. C.; Taskinen, K. A. Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions. Chem. Soc. Rev. 2001, 30, 83-93.

2

Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 1997, 278, 1601-1604.

3

Bandyopadhyay, S.; Chakraborty, S.; Bagchi, B. Secondary structure sensitivity of hydrogen bond lifetime dynamics in the protein hydration layer. J. Am. Chem. Soc. 2005, 127, 16660-16667.

4

Lutz, H. D. Structure and strength of hydrogen bonds in inorganic solids. J. Mol. Struct. 2003, 646, 227-236.

5

Arbely, E.; Arkin, I. T. Experimental measurement of the strength of a C α-H···O bond in a lipid bilayer. J. Am. Chem. Soc. 2004, 126, 5362-5363.

6

Rief, M.; Clausen-Schaumann, H.; Gaub, H. E. Sequence-dependent mechanics of single DNA molecules. Nat. Struct. Mol. Biol. 1999, 6, 346-349.

7

Zou, S.; Schönherr, H.; Vancso, G. J. Force spectroscopy of quadruple h-bonded dimers by AFM: Dynamic bond rupture and molecular time-temperature superposition. J. Am. Chem. Soc. 2005, 127, 11230- 11231.

8

Deshmukh, M. M.; Gadre, S. R. Estimation of N-H···O=C intramolecular hydrogen bond energy in polypeptides. J. Phys. Chem. A 2009, 113, 7927-7932.

9

Steiner, T. The hydrogen bond in the solid state. Angew. Chem., Int. Ed. 2002, 41, 48-76.

10

Kawai, S.; Nishiuchi, T.; Kodama, T.; Spijker, P.; Pawlak, R.; Meier, T.; Tracey, J.; Kubo, T.; Meyer, E.; Foster, A. S. Direct quantitative measurement of the C=O···H-C bond by atomic force microscopy. Sci. Adv. 2017, 3, e1603258.

11

Rief, M.; Oesterhelt, F.; Heymann, B.; Gaub, H. E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 1997, 275, 1295-1297.

12

Li, H. B.; Linke, W. A.; Oberhauser, A. F.; Carrion-Vazquez, M.; Kerkvliet, J. G.; Lu, H.; Marszalek, P. E.; Fernandez, J. M. Reverse engineering of the giant muscle protein titin. Nature 2002, 418, 998-1002.

13

Bull, M. S.; Sullan, R. M. A.; Li, H. B.; Perkins, T. T. Improved single molecule force spectroscopy using micromachined cantilevers. ACS Nano 2014, 8, 4984-4995.

14

Li, H. B.; Cao, Y. Protein mechanics: From single molecules to functional biomaterials. Acc. Chem. Res. 2010, 43, 1331-1341.

15

Li, I. T.; Walker, G. C. Interfacial free energy governs single polystyrene chain collapse in water and aqueous solutions. J. Am. Chem. Soc. 2010, 132, 6530-6540.

16

Kolberg, A.; Wenzel, C.; Hackenstrass, K.; Schwarzl, R.; Rüttiger, C.; Hugel, T.; Gallei, M.; Netz, R. R.; Balzer, B. N. Opposing temperature dependence of the stretching response of single PEG and PNiPAM polymers. J. Am. Chem. Soc. 2019, 141, 11603-11613.

17

Wang, J. P.; Kouznetsova, T. B.; Boulatov, R.; Craig, S. L. Mechanical gating of a mechanochemical reaction cascade. Nat. Commun. 2016, 7, 13433.

18

Cui, S. X.; Albrecht, C.; Kühner, F.; Gaub, H. E. Weakly bound water molecules shorten single-stranded DNA. J. Am. Chem. Soc. 2006, 128, 6636-6639.

19

Cai, W. H.; Xu, D.; Qian, L.; Wei, J. H.; Xiao, C.; Qian, L. M.; Lu, Z. Y.; Cui, S. X. Force-induced transition of π-π stacking in a single polystyrene chain. J. Am. Chem. Soc. 2019, 141, 9500-9503.

20

Chung, J.; Kushner, A. M.; Weisman, A. C.; Guan, Z. B. Direct correlation of single-molecule properties with bulk mechanical performance for the biomimetic design of polymers. Nat. Mater. 2014, 13, 1055-1062.

21

Yang, P.; Song, Y.; Feng, W.; Zhang, W. K. Unfolding of a single polymer chain from the single crystal by air-phase single-molecule force spectroscopy: Toward better force precision and more accurate description of molecular behaviors. Macromolecules 2018, 51, 7052-7060.

22

Luo, Z. L.; Zhang, A. F.; Chen, Y. M.; Shen, Z. H.; Cui, S. X. How big is big enough? Effect of length and shape of side chains on the single-chain enthalpic elasticity of a macromolecule. Macromolecules 2016, 49, 3559-3565.

23

Radiom, M.; Maroni, P.; Borkovec, M. Influence of solvent quality on the force response of individual poly(styrene) polymer chains. ACS Macro Lett. 2017, 6, 1052-1055.

24

Zhao, P.; Xu, C. Q.; Sun, C. X.; Xia, J. H.; Sun, L.; Li, J.; Xu, H. P. Exploring the difference of bonding strength between silver (i) and chalcogenides in block copolymer systems. Polym. Chem. 2020, 11, 7087-7093.

25

Wu, X.; Huang, W. M.; Wu, W. H.; Xue, B.; Xiang, D. F.; Li, Y.; Qin, M.; Sun, F.; Wang, W.; Zhang, W. B. et al. Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res. 2018, 11, 5556-5565.

26

Cai, W. H.; Lu, S.; Wei, J. H.; Cui, S. X. Single-chain polymer models incorporating the effects of side groups: An approach to general polymer models. Macromolecules 2019, 52, 7324-7330.

27

Wang, K. F.; Pang, X. C.; Cui, S. X. Inherent stretching elasticity of a single polymer chain with a carbon-carbon backbone. Langmuir 2013, 29, 4315-4319.

28

Cai, W. H.; Xiao, C.; Qian, L. M.; Cui, S. X. Detecting van der waals forces between a single polymer repeating unit and a solid surface in high vacuum. Nano Res. 2019, 12, 57-61.

29

Cheng, H.; Shen, L.; Wu, C. Lls and ftir studies on the hysteresis in association and dissociation of poly(N-isopropylacrylamide) chains in water. Macromolecules 2006, 39, 2325-2329.

30

Hugel, T.; Seitz, M. The study of molecular interactions by AFM force spectroscopy. Macromol. Rapid Commun. 2001, 22, 989-1016.

31

Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435-447.

32

Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118, 11225-11236.

33

Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511-519.

34

Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182-7190.

35

Darden, T.; York, D.; Pedersen, L. Particle mesh ewald: An N·log(N) method for ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089-10092.

36

Arteca, G. A. Stress-induced shape transitions in polymers using a new approach to steered molecular dynamics. Phys. Chem. Chem. Phys. 2003, 5, 407-414.

37

Zhang, Q. M.; Jaroniec, J.; Lee, G.; Marszalek, P. E. Direct detection of inter-residue hydrogen bonds in polysaccharides by single-molecule force spectroscopy. Angew. Chem., Int. Ed. 2005, 44, 2723-2727.

38

Barclay, T. G.; Rajapaksha, H.; Thilagam, A.; Qian, G. J.; Ginic- Markovic, M.; Cooper, P. D.; Gerson, A.; Petrovsky, N. Physical characterization and in silico modeling of inulin polymer conformation during vaccine adjuvant particle formation. Carbohyd. Polym. 2016, 143, 108-115.

39

Musgaard, M.; Biggin, P. C. Steered molecular dynamics simulations predict conformational stability of glutamate receptors. J. Chem. Inf. Model. 2016, 56, 1787-1797.

40

van Buul, A. M.; Schwartz, E.; Brocorens, P.; Koepf, M.; Beljonne, D.; Maan, J. C.; Christianen, P. C. M.; Kouwer, P. H. J.; Nolte, R. J. M.; Engelkamp, H. et al. Stiffness versus architecture of single helical polyisocyanopeptides. Chem. Sci. 2013, 4, 2357-2363.

41

Feng, W.; Wang, Z. G.; Zhang, W. K. Effect of chain conformation on the single-molecule melting force in polymer single crystals: Steered molecular dynamics simulations study. Langmuir 2017, 33, 1826-1833.

42

Ozer, G.; Quirk, S.; Hernandez, R. Thermodynamics of decaalanine stretching in water obtained by adaptive steered molecular dynamics simulations. J. Chem. Theory Comput. 2012, 8, 4837-4844.

43

Sheridan, S.; Gräter, F.; Daday, C. How fast is too fast in force-probe molecular dynamics simulations? J. Phys. Chem. B 2019, 123, 3658-3664.

44

Luzar, A.; Chandler, D. Structure and hydrogen bond dynamics of water-dimethyl sulfoxide mixtures by computer simulations. J. Chem. Phys. 1993, 98, 8160-8173.

45

Katsumoto, Y.; Tanaka, T.; Ihara, K.; Koyama, M.; Ozaki, Y. Contribution of intramolecular C=O···H-N hydrogen bonding to the solvent-induced reentrant phase separation of poly(N- isopropylacrylamide). J. Phys. Chem. B 2007, 111, 12730-12737.

46

Yamauchi, H.; Maeda, Y. LCST and UCST behavior of poly(N- isopropylacrylamide) in DMSO/water mixed solvents studied by IR and micro-Raman spectroscopy. J. Phys. Chem. B 2007, 111, 12964-12968.

47

Cui, S. X.; Liu, C. J.; Wang, Z. Q.; Zhang, X.; Strandman, S.; Tenhu, H. Single molecule force spectroscopy on polyelectrolytes: Effect of spacer on adhesion force and linear charge density on rigidity. Macromolecules 2004, 37, 946-953.

48

Hugel, T.; Rief, M.; Seitz, M.; Gaub, H. E.; Netz, R. R. Highly stretched single polymers: Atomic-force-microscope experiments versus ab-initio theory. Phys. Rev. Lett. 2005, 94, 048301.

49

Saleh, O. A.; McIntosh, D. B.; Pincus, P.; Ribeck, N. Nonlinear low- force elasticity of single-stranded DNA molecules. Phys. Rev. Lett. 2009, 102, 068301.

50

Livadaru, L.; Netz, R.; Kreuzer, H. J. Stretching response of discrete semiflexible polymers. Macromolecules 2003, 36, 3732-3744.

51

Cui, S. X.; Yu, Y.; Lin, Z. B. Modeling single chain elasticity of single-stranded DNA: A comparison of three models. Polymer 2009, 50, 930-935.

52

Kühner, F.; Gaub, H. E. Modelling cantilever-based force spectroscopy with polymers. Polymer 2006, 47, 2555-2563.

53

Zhou, K. J.; Lu, Y. J.; Li, J. F.; Shen, L.; Zhang, G. Z.; Xie, Z. W.; Wu, C. The coil-to-globule-to-coil transition of linear polymer chains in dilute aqueous solutions: Effect of intrachain hydrogen bonding. Macromolecules 2008, 41, 8927-8931.

54

Xue, Z. Q.; Liu, W. M.; Gao, H. J.; Zhu, C.; Ma, Z.; Pang, S. J. Polyethylene crystal lamella growth on the mica. J. Vac. Sci. Technol. A 1992, 10, 627-629.

55

Ben-Tal, N.; Sitkoff, D.; Topol, I. A.; Yang, A. S.; Burt, S. K.; Honig, B. Free energy of amide hydrogen bond formation in vacuum, in water, and in liquid alkane solution. J. Phys. Chem. B 1997, 101, 450-457.

56

McIntosh, D. B.; Duggan, G.; Gouil, Q.; Saleh, O. A. Sequence- dependent elasticity and electrostatics of single-stranded DNA: Signatures of base-stacking. Biophys. J. 2014, 106, 659-666.

57

Bruce, E. E.; Bui, P. T.; Rogers, B. A.; Cremer, P. S.; van der Vegt, N. F. A. Nonadditive ion effects drive both collapse and swelling of thermoresponsive polymers in water. J. Am. Chem. Soc. 2019, 141, 6609-6616.

58

Lohikoski, R.; Timonen, J.; Laaksonen, A. Molecular dynamics simulation of single DNA stretching reveals a novel structure. Chem. Phys. Lett. 2005, 407, 23-29.

59

Kanduč, M.; Chudoba, R.; Palczynski, K.; Kim, W. K.; Roa, R.; Dzubiella, J. Selective solute adsorption and partitioning around single pnipam chains. Phys. Chem. Chem. Phys. 2017, 19, 5906-5916.

60

Da, L. T.; E, C.; Shuai, Y.; Wu, S. G.; Su, X. D.; Yu, J. T7 RNA polymerase translocation is facilitated by a helix opening on the fingers domain that may also prevent backtracking. Nucleic Acids Res. 2017, 45, 7909-7921.

61

Evans, E. Probing the relation between force-lifetime-and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 105-128.

62

Woutersen, S.; Mu, Y.; Stock, G.; Hamm, P. Hydrogen-bond lifetime measured by time-resolved 2D-IR spectroscopy: N-methylacetamide in methanol. Chem. Phys. 2001, 266, 137-147.

63

Kang, Y. K. Which functional form is appropriate for hydrogen bond of amides? J. Phys. Chem. B 2000, 104, 8321-8326.

64

Kobko, N.; Paraskevas, L.; del Rio, E.; Dannenberg, J. J. Cooperativity in amide hydrogen bonding chains: Implications for protein-folding models. J. Am. Chem. Soc. 2001, 123, 4348-4349.

65

Koyama, M.; Hirano, T.; Ohno, K.; Katsumoto, Y. Molecular understanding of the UCST-type phase separation behavior of a stereocontrolled poly(N-isopropylacrylamide) in bis(2-methoxyethyl) ether. J. Phys. Chem. B 2008, 112, 10854-10860.

66

Luo, Z. L.; Zhang, B.; Qian, H. J.; Lu, Z. Y.; Cui, S. X. Effect of the size of solvent molecules on the single-chain mechanics of poly(ethylene glycol): Implications on a novel design of a molecular motor. Nanoscale 2016, 8, 17820-17827.

Nano Research
Pages 1517-1523
Cite this article:
Cai W, Xu D, Zhang F, et al. Intramolecular hydrogen bonds in a single macromolecule: Strength in high vacuum versus liquid environments. Nano Research, 2022, 15(2): 1517-1523. https://doi.org/10.1007/s12274-021-3696-1
Topics:
Metrics & Citations  
Article History
Copyright
Return