Graphical Abstract

Understanding charge transport mechanisms in thin-film transistors based on random networks of single-wall carbon nanotubes (SWCNT-TFTs) is essential for further advances to improve the potential for various nanoelectronic applications. Herein, a comprehensive investigation of the two-dimensional (2D) charge transport mechanism in SWCNT-TFTs is reported by analyzing the temperature-dependent electrical characteristics determined from the direct-current and non-quasi-static transient measurements at 80-300 K. To elucidate the time-domain charge transport characteristics of the random networks in the SWCNTs, an empirical equation was derived from a theoretical trapping model, and a carrier velocity distribution was determined from the differentiation of the transient response. Furthermore, charge trapping and de-trapping in shallow- and deep-traps in SWCNT-TFTs were analyzed by investigating charge transport based on their trapping/de-trapping rate. The comprehensive analysis of this study provides fundamental insights into the 2D charge transport mechanism in TFTs based on random networks of nanomaterial channels.
Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F. P. V.; Stingelin, N.; Smith, P.; Toney, M. F.; Salleo, A. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 2013, 12, 1038-1044.
Liu, C.; Zhang, D. D.; Duan, L. A novel anthracene derivative with an asymmetric structure as an electron transport material for stable Rec. 2020 blue organic light-emitting diodes. J. Inf. Dis. 2020, 21, 197-201.
Li, S. L.; Tsukagoshi, K.; Orgiu, E.; Samorì, P. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem. Soc. Rev. 2016, 45, 118-151.
Lassagne, B.; Tarakanov, Y.; Kinaret, J.; Garcia-Sanchez, D.; Bachtold, A. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 2009, 325, 1107-1110.
Nikitenko, V. R.; von Seggern, H.; Bässler, H. Non-equilibrium transport of charge carriers in disordered organic materials. J. Phys. Condens. Matter 2007, 19, 136210.
Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J. L. Charge transport in organic semiconductors. Chem. Rev. 2007, 107, 926-952.
Takeya, J.; Yamagishi, M.; Tominari, Y.; Hirahara, R.; Nakazawa, Y.; Nishikawa, T.; Kawase, T.; Shimoda, T.; Ogawa, S. Very high- mobility organic single-crystal transistors with in-crystal conduction channels. Appl. Phys. Lett. 2007, 90, 102120.
Sirringhaus, H. 25th anniversary article: Organic field-effect transistors: The path beyond amorphous silicon. Adv. Mater. 2014, 26, 1319-1335.
Fratini, S.; Xie, H.; Hulea, I. N.; Ciuchi, S.; Morpurgo, A. F. Current saturation and Coulomb interactions in organic single-crystal transistors. New J. Phys. 2008, 10, 033031.
Bittle, E. G.; Basham, J. I.; Jackson, T. N.; Jurchescu, O. D.; Gundlach, D. J. Mobility overestimation due to gated contacts in organic field-effect transistors. Nat. Commun. 2016, 7, 10908.
Un, H. I.; Cheng, P.; Lei, T.; Yang, C. Y.; Wang, J. Y.; Pei, J. Charge-trapping-induced non-ideal behaviors in organic field-effect transistors. Adv. Mater. 2018, 30, 1800017.
Illarionov, Y. Y.; Waltl, M.; Rzepa, G.; Kim, J. S.; Kim, S.; Dodabalapur, A.; Akinwande, D.; Grasser, T. Long-term stability and reliability of black phosphorus field-effect transistors. ACS Nano 2016, 10, 9543-9549.
Mathijssen, S. G. J.; Cölle, M.; Gomes, H.; Smits, E. C. P.; de Boer, B.; McCulloch, I.; Bobbert, P. A.; de Leeuw, D. M. Dynamics of threshold voltage shifts in organic and amorphous silicon field-effect transistors. Adv. Mater. 2007, 19, 2785-2789.
Kang, B. H.; Jung, S. J.; Hong, S.; Lee, I. S.; Hong, S.; Kim, S.; Kim, H. J. Improvement of the stability and optoelectronic characteristics of molybdenum disulfide thin-film transistors by applying a nitrocellulose passivation layer. J. Inf. Dis. 2020, 21, 123-130.
Park, J.; Hur, J. H.; Jeon, S. Quantitative analysis of charge trapping and classification of sub-gap states in MoS2 TFT by Pulse I-V method. Nanotechnology 2018, 29, 175704.
Yang. Y. J.; He, L.; Tang, C. J.; Hu, P.; Hong, X. F.; Yan, M. Y.; Dong, Y. X.; Tian, X. C.; Wei, Q. L.; Mai, L. Q. Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Res. 2016, 9, 2510-2519.
Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654-657.
Jeon, J. Y.; Kang, B. C.; Ha, T. J. Flexible pH sensors based on printed nanocomposites of single-wall carbon nanotubes and Nafion. Appl. Surf. Sci. 2020, 514, 145956.
Lei, T.; Shao, L. L.; Zheng, Y. Q.; Pitner, G.; Fang, G. H.; Zhu, C. X.; Li, S. C.; Beausoleil, R.; Wong, H. S. P.; Huang, T. C. et al. Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 2019, 10, 2161.
Deshmukh, M. A.; Kang, B. C.; Jeon, J. Y.; Ha, T. J. Stable dispersions of single-wall carbon nanotubes using self-assembled amphiphilic copolymer surfactants for fabricating wafer-scale devices. ACS Appl. Nano Mater. 2020, 3, 8829-8839.
Poudel, Y. R.; Li, W. Z. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: A review. Mater. Today Phys. 2018, 7, 7-34.
Chen, H. T.; Cao, Y.; Zhang, J. L.; Zhou, C. W. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 2014, 5, 4097.
Cresti, A.; Nemec, N.; Biel, B.; Niebler, G.; Triozon, F.; Cuniberti, G.; Roche, S. Charge transport in disordered graphene-based low dimensional materials. Nano Res. 2008, 1, 361-394.
Brohmann, M.; Rother, M.; Schießl, S. P.; Preis, E.; Allard, S.; Scherf, U.; Zaumseil, J. Temperature-dependent charge transport in polymer-sorted semiconducting carbon nanotube networks with different diameter distributions. J. Phys. Chem. C 2018, 122, 19886-19896.
Weis, M.; Lin, J.; Taguchi, D.; Manaka, T.; Iwamoto, M. Analysis of transient currents in organic field effect transistor: The time-of- flight method. J. Phys. Chem. C 2009, 113, 18459-18461.
Manaka, T.; Liu, F.; Weis, M.; Iwamoto, M. Influence of traps on transient electric field and mobility evaluation in organic field-effect transistors. J. Appl. Phys. 2010, 107, 043712.
Dunn, L.; Dodabalapur, A. Temperature dependent transient velocity and mobility studies in an organic field effect transistor. J. Appl. Phys. 2010, 107, 113714.
Engel-Herbert, R.; Hwang, Y.; Stemmer, S. Comparison of methods to quantify interface trap densities at dielectric/Ⅲ-V semiconductor interfaces. J. Appl. Phys. 2010, 108, 124101.
Li, H. T.; Huang, P.; Gao, B.; Chen, B.; Liu, X. Y.; Kang, J. F. A SPICE model of resistive random access memory for large-scale memory array simulation. IEEE Electron Device Lett. 2014, 35, 211-213.
Brohmann, M.; Berger, F. J.; Matthiesen, M.; Schießl, S. P.; Schneider, S.; Zaumseil, J. Charge transport in mixed semiconducting carbon nanotube networks with tailored mixing ratios. ACS Nano 2019, 13, 7323-7332.
Ha, T. J.; Chen, K.; Chuang, S.; Yu, K. M.; Kiriya, D.; Javey, A. Highly uniform and stable n-type carbon nanotube transistors by using positively charged silicon nitride thin films. Nano Lett. 2015, 15, 392-397.
Vellingiri, L.; Annamalai, K.; Kandasamy, R.; Kombiah, I. Single- walled carbon nanotubes/lithium borohydride composites for hydrogen storage: Role of in situ formed LiB(OH)4, Li2CO3 and LiBO2 by oxidation and nitrogen annealing. RSC Adv. 2019, 9, 31483-31496.
Oh, J. W.; Heo, J.; Kim, T. H. An electrochemically modulated single- walled carbon nanotube network for the development of a transparent flexible sensor for dopamine. Sens. Actuators B Chem. 2018, 267, 438-447.
Kalbac, M.; Hsieh, Y. P.; Farhat, H.; Kavan, L.; Hofmann, M.; Kong, J.; Dresselhaus, M. S. Defects in individual semiconducting single wall carbon nanotubes: Raman spectroscopic and in situ Raman spectroelectrochemical study. Nano Lett. 2010, 10, 4619-4626.
Telg, H.; Duque, J. G.; Staiger, M.; Tu, X. M.; Hennrich, F.; Kappes, M. M.; Zheng, M.; Maultzsch, J.; Thomsen, C.; Doorn, S. K. Chiral index dependence of the G+ and G- Raman modes in semiconducting carbon nanotubes. ACS Nano 2012, 6, 904-911.
Cao, Q.; Xia, M. G.; Kocabas, C.; Shim, M.; Rogers, J. A. Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Appl. Phys. Lett. 2007, 90, 023516.
Jin, S. H.; Shin, J.; Cho, I. T.; Han, S. Y.; Lee, D. J.; Lee, C. H.; Lee, J. H.; Rogers, J. A. Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics. Appl. Phys. Lett. 2014, 105, 013506.
Jin, S. H.; Islam, A. E.; Kim, T. I.; Kim, J. H.; Alam, M. A.; Rogers, J. A. Sources of hysteresis in carbon nanotube field-effect transistors and their elimination via methylsiloxane encapsulants and optimized growth procedures. Adv. Funct. Mater. 2012, 22, 2276-2284.
Gao, J.; Loo, Y. L. Temperature-dependent electrical transport in polymer-sorted semiconducting carbon nanotube networks. Adv. Funct. Mater. 2015, 25, 105-110.
McDowell, M.; Hill, I. G.; McDermott, J. E.; Bernasek, S. L.; Schwartz, J. Improved organic thin-film transistor performance using novel self-assembled monolayers. Appl. Phys. Lett. 2006, 88, 073505.
Liu, C.; Li, G. T.; Di Pietro, R.; Huang, J.; Noh, Y. Y.; Liu, X. Y.; Minari, T. Device physics of contact issues for the overestimation and underestimation of carrier mobility in field-effect transistors. Phys. Rev. Appl. 2017, 8, 034020.
Horowitz, G.; Hajlaoui, M. E.; Hajlaoui, R. Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors. J. Appl. Phys. 2000, 87, 4456.
Ha, T. J.; Sonar, P.; Cobb, B.; Dodabalapur, A. Charge transport and density of trap states in balanced high mobility ambipolar organic thin-film transistors. Org. Electron. 2012, 13, 136-141.
Kalb, W. L.; Batlogg, B. Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods. Phys. Rev. B 2010, 81, 035327.
Okubo, M.; Tanaka, Y.; Zhou, H. S.; Kudo, T.; Honma, I. Determination of activation energy for Li ion diffusion in electrodes. J. Phys. Chem. B 2009, 113, 2840-2847.
Harada, Y.; Eriguchi, K.; Niwa, M.; Watanabe, T.; Ohdomari, I. Impact of structural strained layer near SiO2/Si interface on activation energy of time-dependent dielectric breakdown. Jpn. J. Appl. Phys. 2000, 39, 4687.
Park, Y.; Baac, H. W.; Heo, J.; Yoo, G. Thermally activated trap charges responsible for hysteresis in multilayer MoS2 field-effect transistors. Appl. Phys. Lett. 2016, 108, 083102.
Kim, W. S.; Moon, Y. K.; Kim, K. T.; Shin, S. Y.; Ahn, B. D.; Lee, J. H.; Park, J. W. The influence of hafnium doping on bias stability in zinc oxide thin film transistors. Thin Solid Films 2011, 519, 5161-5164.
Chen, K. Y.; Yang, C. C.; Huang, C. Y.; Su, Y. K. ALD Al2O3 gate dielectric on the reduction of interface trap density and the enhanced photo-electric performance of IGO TFT. RSC Adv. 2020, 10, 9902- 9906.
Chen, G.; Xu, Z. Q. Charge trapping and detrapping in polymeric materials. J. Appl. Phys. 2009, 106, 123707.
Park, R. S.; Shulaker, M. M.; Hills, G.; Liyanage, L. S.; Lee, S.; Tang, A.; Mitra, S.; Wong, H. S. P. Hysteresis in carbon nanotube transistors: Measurement and analysis of trap density, energy level, and spatial distribution. ACS Nano 2016, 10, 4599-4608.
Germs, W. C.; van der Holst, J. J. M.; van Mensfoort, S. L. M.; Bobbert, P. A.; Coehoorn, R. Modeling of the transient mobility in disordered organic semiconductors with a Gaussian density of states. Phys. Rev. B 2011, 84, 165210.
McNeill, C. R.; Hwang, I.; Greenham, N. Photocurrent transients in all-polymer solar cells: Trapping and detrapping effects. J. Appl. Phys. 2009, 106, 024507.
Jafari, S.; Zhu, Y.; Rougieux, F.; Guzman, J. A. T. D.; Markevich, V. P.; Peaker, A. R.; Hameiri, Z. On the correlation between light-induced degradation and minority carrier traps in boron-doped czochralski silicon. ACS Appl. Mater. Interfaces 2021, 13, 6140-6146.
Park, B.; Jang, J.; Kim, H.; Seo, J.; Yoo, H.; Kim, T.; Hong, Y. Dense assembly of finely patterned semiconducting single-walled carbon nanotubes via a selective transfer method of nanotube- attracting layers. ACS Appl. Mater. Interfaces 2020, 12, 38441-38450.
Wang, C.; Chien, J. C.; Takei, K.; Takahashi, T.; Nah, J.; Niknejad, A. M.; Javey, A. Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 2012, 12, 1527-1533.