AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Controllable printing of large-scale compact perovskite films for flexible photodetectors

Zhenkun Gu1,2Ying Wang1Shiheng Wang1Ting Zhang1Rudai Zhao1Xiaotian Hu2Zhandong Huang2Meng Su2Qun Xu1Lihong Li2( )Yiqiang Zhang1( )Yanlin Song2,3 ( )
Henan Institute of Advanced Technology, Green Catalysis Center, and College of ChemistrySchool of Materials Science and Engineering, Zhengzhou UniversityZhengzhou450051China
Institute of Chemistry, Chinese Academy of Sciences (ICCAS)Beijing National Laboratory for Molecular Sciences (BNLMS)Beijing100190China
University of Chinese Academy of SciencesBeijing100049China
Show Author Information

Graphical Abstract

Abstract

Perovskite materials are promising candidates for the next generation of wearable optoelectronics. However, due to uncontrolled crystallization and the natural brittle property of crystals, it remains a great challenge to fabricate large-scale compact and tough perovskite film. Here we report a facile method to print large-scale perovskite films with high quality for flexible photodetectors. By introducing a soluble polyethylene oxide (PEO) layer during the inkjet printing process, the nucleation and crystal growth of perovskite is well controlled. Perovskite films can be easily printed in large scale and patterned in high resolution. Moreover, this method can be extended to various kinds of perovskite materials, such as MAPbI3 (MA = methylammonium), MA3Sb2I9, and (BA)2PbBr4 (BA = benzylammonium). The printed perovskite films show high quality and excellent mechanical performance. The photodetectors based on the MAPbBr3 perovskite films show a responsivity up to ~ 1, 036 mA/W and maintain over 96.8% of the initial photocurrent after 15, 000 consecutive bending cycles. This strategy provides a facile approach to prepare large-scale flexible perovskite films. It opens up new opportunities for the fabrication of diverse wearable optoelectronic devices.

Electronic Supplementary Material

Download File(s)
12274_2021_3700_MOESM1_ESM.pdf (1.7 MB)

References

1

Wei, J.; Wang, X.; Sun, X. Y.; Yang, Z. F.; Moreels, I.; Xu, K.; Li, H. B. Polymer assisted deposition of high-quality CsPbI2Br film with enhanced film thickness and stability. Nano Res. 2020, 13, 684-690.

2

Li, X. M.; Wang, K. L.; Lgbari, F.; Dong, C.; Yang, W. F.; Ma, C.; Ma, H.; Wang, Z. K.; Liao, L. S. Indium doped CsPbI3 films for inorganic perovskite solar cells with efficiency exceeding 17%. Nano Res. 2020, 13, 2203-2208.

3

Meng, L. X.; Wang, M.; Sun, H. X.; Tian, W.; Xiao, C. H.; Wu, S. L.; Cao, F. R.; Li, L. Designing a transparent CdIn2S4/In2S3 bulk- heterojunction photoanode integrated with a perovskite solar cell for unbiased water splitting. Adv. Mater. 2020, 32, 2002893.

4

Da, P. M.; Zheng, G. F. Tailoring interface of lead-halide perovskite solar cells. Nano Res. 2017, 10, 1471-1497.

5

Lee, H. D.; Kim, H.; Cho, H.; Cha, W.; Hong, Y.; Kim, Y. H.; Sadhanala, A.; Venugopalan, V.; Kim, J. S.; Choi, J. W. et al. Efficient ruddlesden-popper perovskite light-emitting diodes with randomly oriented nanocrystals. Adv. Funct. Mater. 2019, 29, 1901225.

6

Park, M. H.; Park, J.; Lee, J.; So, H. S.; Kim, H.; Jeong, S. H.; Han, T. H.; Wolf, C.; Lee, H.; Yoo, S. et al. Efficient perovskite light- emitting diodes using polycrystalline core-shell-mimicked nanograins. Adv. Funct. Mater. 2019, 29, 1902017.

7

Wang, C. H.; Han, D. B.; Wang, J. H.; Yang, Y. G.; Liu, X. Y.; Huang, S.; Zhang, X.; Chang, S.; Wu, K. F.; Zhong, H. Z. Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes. Nat. Commun. 2020, 11, 6428.

8

Feng, J. G.; Yan, X. X.; Liu, Y.; Gao, H. F.; Wu, Y. C.; Su, B.; Jiang, L. Crystallographically aligned perovskite structures for high-performance polarization-sensitive photodetectors. Adv. Mater. 2017, 29, 1605993.

9

Gao, H. F.; Feng, J. G.; Pi, Y. Y.; Zhou, Z. H.; Zhang, B.; Wu, Y. C.; Wang, X. D.; Jiang, X. Y.; Jiang, L. Bandgap engineering of single- crystalline perovskite arrays for high-performance photodetectors. Adv. Funct. Mater. 2018, 28, 1804349.

10

Sun, H. X.; Tian, W.; Wang, X. F.; Deng, K. M.; Xiong, J.; Li, L. In situ formed gradient bandgap-tunable perovskite for ultrahigh-speed color/spectrum-sensitive photodetectors via electron-donor control. Adv. Mater. 2020, 32, 1908108.

11

Zhang, W.; Peng, L.; Liu, J.; Tang, A. W.; Hu, J. S.; Yao, J. N.; Zhao, Y. S. Controlling the cavity structures of two-photon-pumped perovskite microlasers. Adv. Mater. 2016, 28, 4040-4046.

12

Liu, X. F.; Niu, L.; Wu, C. Y.; Cong, C. X.; Wang, H.; Zeng, Q. S.; He, H. Y.; Fu, Q. D.; Fu, W.; Yu, T. et al. Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room- temperature lasing. Adv. Sci. 2016, 3, 1600137.

13

Wu, Z. Y.; Chen, J.; Mi, Y.; Sui, X. Y.; Zhang, S.; Du, W. N.; Wang, R.; Shi, J.; Wu, X. X.; Qiu, X. H. et al. All-inorganic CsPbBr3 nanowire based plasmonic lasers. Adv. Opt. Mater. 2018, 6, 1800674.

14

Duan, X. P.; Li, X.; Tan, L. C.; Huang, Z. Q.; Yang, J.; Liu, G. L.; Lin, Z. J.; Chen, Y. W. Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells. Adv. Mater. 2020, 32, 2000617.

15

Chen, X. G.; Song, X. J.; Zhang, Z. X.; Zhang, H. Y.; Pan, Q.; Yao, J.; You, Y. M.; Xiong, R. G. Confinement-driven ferroelectricity in a two-dimensional hybrid lead iodide perovskite. J. Am. Chem. Soc. 2020, 142, 10212-10218.

16

Li, L. Y.; Liu, J. X.; Zeng, M. Q.; Fu, L. Space-confined growth of metal halide perovskite crystal films. Nano Res. 2020, 14, 1609-1624.

17

Liu, X.; Wang, Y. B.; Wu, T. H.; He, X.; Meng, X. Y.; Barbaud, J.; Chen, H.; Segawa, H.; Yang, X. D.; Han, L. Y. Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure. Nat. Commun. 2020, 11, 2678.

18

Liu, X.; Wu, T. H.; Chen, J. Y.; Meng, X. Y.; He, X.; Noda, T.; Chen, H.; Yang, X. D.; Segawa, H.; Wang, Y. B. et al. Templated growth of FASnI3 crystals for efficient tin perovskite solar cells. Energy Environ. Sci. 2020, 13, 2896-2902.

19

Barrows, A. T.; Pearson, A. J.; Kwak, C. K.; Dunbar, A. D. F.; Buckley, A. R.; Lidzey, D. G. Efficient planar heterojunction mixed- halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 2014, 7, 2944-2950.

20

Bag, S.; Deneault, J. R.; Durstock, M. F. Aerosol-jet-assisted thin-film growth of CH3NH3PbI3 perovskites-a means to achieve high quality, defect-free films for efficient solar cells. Adv. Energy Mater. 2017, 7, 1701151.

21

Chen, H.; Ye, F.; Tang, W. T.; He, J. J.; Yin, M. S.; Wang, Y. B.; Xie, F. X.; Bi, E. B.; Yang, X. D.; Grätzel, M. et al. A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 2017, 550, 92-95.

22

Ye, F.; Chen, H.; Xie, F.; Tang, W.; Yin, M.; He, J.; Bi, E.; Wang, Y.; Yang, X.; Han, L. Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy Environ. Sci. 2016, 9, 2295-2301.

23

Ye, F.; Tang, W. T.; Xie, F. X.; Yin, M. S.; He, J. J.; Wang, Y. B.; Chen, H.; Qiang, Y. H.; Yang, X. D.; Han, L. Y. Low-temperature soft-cover deposition of uniform large-scale perovskite films for high-performance solar cells. Adv. Mater. 2017, 29, 1701440.

24

Kim, J. H.; Williams, S. T.; Cho, N.; Chueh, C. C.; Jen, A. K. Y. Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade-coating. Adv. Energy Mater. 2015, 5, 1401229.

25

Deng, Y. H.; Zheng, X. P.; Bai, Y.; Wang, Q.; Zhao, J. J.; Huang, J. S. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 2018, 3, 560-566.

26

Li, S. G.; Jiang, K. J.; Su, M. J.; Cui, X. P.; Huang, J. H.; Zhang, Q. Q.; Zhou, X. Q.; Yang, L. M.; Song, Y. L. Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. J. Mater. Chem. A 2015, 3, 9092-9097.

27

Wei, Z. H.; Chen, H. N.; Yan, K. Y.; Yang, S. H. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew. Chem., Int. Ed. 2014, 53, 13239-13243.

28

Hu, X. T.; Meng, X. C.; Zhang, L.; Zhang, Y. Y.; Cai, Z. R.; Huang, Z. Q.; Su, M.; Wang, Y.; Li, M. Z.; Li, F. Y. et al. A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells. Joule 2019, 3, 2205-2218.

29

Dai, X. Z.; Deng, Y. H.; Van Brackle, C. H.; Chen, S. S.; Rudd, P. N.; Xiao, X.; Lin, Y.; Chen, B.; Huang, J. S. Scalable fabrication of efficient perovskite solar modules on flexible glass substrates. Adv. Energy Mater. 2020, 10, 1903108.

30

Bu, T. L.; Li, J.; Zheng, F.; Chen, W. J.; Wen, X. M.; Ku, Z. L.; Peng, Y.; Zhong, J.; Cheng, Y. B.; Huang, F. Z. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat. Commun. 2018, 9, 4609.

31

Li, J. Q.; Bade, S. G. R.; Shan, X.; Yu, Z. B. Single-layer light-emitting diodes using organometal halide perovskite/poly(ethylene oxide) composite thin films. Adv. Mater. 2015, 27, 5196-5202.

32

Jeong, B.; Han, H.; Choi, Y. J.; Cho, S. H.; Kim, E. H.; Lee, S. W.; Kim, J. S.; Park, C.; Kim, D.; Park, C. All-inorganic CsPbI3 perovskite phase-stabilized by poly(ethylene oxide) for red-light-emitting diodes. Adv. Funct. Mater. 2018, 28, 1706401.

33

Ling, Y. C.; Tian, Y.; Wang, X.; Wang, J. C.; Knox, J. M.; Perez-Orive, F.; Du, Y. J.; Tan, L.; Hanson, K.; Ma, B. W. et al. Enhanced optical and electrical properties of polymer-assisted all-inorganic perovskites for light-emitting diodes. Adv. Mater. 2016, 28, 8983-8989.

34

Tian, Y.; Zhou, C. K.; Worku, M.; Wang, X.; Ling, Y. C.; Gao, H. W.; Zhou, Y.; Miao, Y.; Guan, J. J.; Ma, B. W. Highly efficient spectrally stable red perovskite light-emitting diodes. Adv. Mater. 2018, 30, 1707093.

35

Saidaminov, M. I.; Abdelhady, A. L.; Murali, B.; Alarousu, E.; Burlakov, V. M.; Peng, W.; Dursun, I.; Wang, L. F.; He, Y.; Maculan, G. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 2015, 6, 7586.

36

Eggers, H.; Schackmar, F.; Abzieher, T.; Sun, Q.; Lemmer, U.; Vaynzof, Y.; Richards, B. S.; Hernandez-Sosa, G.; Paetzold, U. W. Inkjet-printed micrometer-thick perovskite solar cells with large columnar grains. Adv. Energy Mater. 2020, 10, 1903184.

37

Barabási, A. L.; Stanley, H. E. Fractal Concepts in Surface Growth; Press Syndicate of the University of Cambridge: New York, 1995.

38

Chang, Y. H.; Ku, C. W.; Zhang, Y. H.; Wang, H. C.; Chen, J. Y. Ultrafast responsive non-volatile flash photomemory via spatially addressable perovskite/block copolymer composite film. Adv. Funct. Mater. 2020, 30, 2000764.

39

Ge, F.; Wang, X. H.; Zhang, Y. F.; Song, E.; Zhang, G. B.; Lu, H. B.; Cho, K.; Qiu, L. Z. Modulating the surface via polymer brush for high-performance inkjet-printed organic thin-film transistors. Adv. Electron. Mater. 2017, 3, 1600402.

40

Hu, X. T.; Huang, Z. Q.; Li, F. Y.; Su, M.; Huang, Z. D.; Zhao, Z. P.; Cai, Z. R.; Yang, X.; Meng, X. C.; Li, P. W. et al. Nacre-inspired crystallization and elastic "brick-and-mortar" structure for a wearable perovskite solar module. Energy Environ. Sci. 2019, 12, 979-987.

41

Song, J. Z.; Xu, L. M.; Li, J. H.; Xue, J.; Dong, Y. H.; Li, X. M.; Zeng, H. B. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 2016, 28, 4861-4869.

42

Cao, F. R.; Tian, W.; Meng, L. X.; Wang, M.; Li, L. Ultrahigh- performance flexible and self-powered photodetectors with ferroelectric P(VDF-TrFE)/perovskite bulk heterojunction. Adv. Funct. Mater. 2019, 29, 1808415.

43

Bade, S. G. R.; Shan, X.; Hoang, P. T.; Li, J. Q.; Geske, T.; Cai, L.; Pei, Q. B.; Wang, C.; Yu, Z. B. Stretchable light-emitting diodes with organometal-halide-perovskite-polymer composite emitters. Adv. Mater. 2017, 29, 1607053.

Nano Research
Pages 1547-1553
Cite this article:
Gu Z, Wang Y, Wang S, et al. Controllable printing of large-scale compact perovskite films for flexible photodetectors. Nano Research, 2022, 15(2): 1547-1553. https://doi.org/10.1007/s12274-021-3700-9
Topics:

1095

Views

37

Crossref

38

Web of Science

35

Scopus

2

CSCD

Altmetrics

Received: 07 May 2021
Revised: 17 June 2021
Accepted: 18 June 2021
Published: 05 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return