Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Modern design of superior multi-functional alloys composed of several principal components requires in-depth studies of their local structure for developing desired macroscopic properties. Herein, peculiarities of atomic arrangements on the local scale and electronic states of constituent elements in the single-phase face-centered cubic (fcc)- and body-centered cubic (bcc)-structured high-entropy Alx-CrFeCoNi alloys (x = 0.3 and 3, respectively) are explored by element-specific X-ray absorption spectroscopy in hard and soft X-ray energy ranges. Simulations based on the reverse Monte Carlo approach allow to perform a simultaneous fit of extended X-ray absorption fine structure spectra recorded at K absorption edges of each 3d constituent and to reconstruct the local environment within the first coordination shells of absorbers with high precision. The revealed unimodal and bimodal distributions of all five elements are in agreement with structure-dependent magnetic properties of studied alloys probed by magnetometry. A degree of surface atoms oxidation uncovered by soft X-rays suggests different kinetics of oxide formation for each type of constituents and has to be taken into account. X-ray magnetic circular dichroism technique employed at L2,3 absorption edges of transition metals demonstrates reduced magnetic moments of 3d metal constituents in the sub-surface region of in situ cleaned fcc-structured Al0.3-CrFeCoNi compared to their bulk values. Extended to nanostructured versions of multicomponent alloys, such studies would bring new insights related to effects of high entropy mixing on low dimensions.
Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375-377, 213–218.
Yeh, J. W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat. 2006, 31, 633–648.
Ye, Y. F.; Wang, Q.; Lu, J.; Liu, C. T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater Today 2016, 19, 349–362.
George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534.
Yeh, J. W.; Lin, S. J.; Chin, T. S.; Gan, J. Y.; Chen, S. K.; Shun, T. T.; Tsau C. H.; Chou S. Y. Formation of simple crystal structures in Cu−Co−Ni−Cr−Al−Fe−Ti−V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A 2004, 35, 2533–2536.
Dahlborg, U.; Cornide, J.; Calvo-Dahlborg, M.; Hansen, T. C.; Fitch, A.; Leong, Z.; Chambreland, S.; Goodall, R. Structure of some CoCrFeNi and CoCrFeNiPd multicomponent HEA alloys by diffraction techniques. J. Alloys Compd. 2016, 681, 330–341.
Santodonato, L. J.; Zhang, Y.; Feygenson, M.; Parish, C. M.; Gao, M. C.; Weber, R. J. K.; Neuefeind, J. C.; Tang, Z.; Liaw, P. K. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 2015, 6, 5964.
Li, D. Y.; Li, C. X.; Feng, T.; Zhang, Y. D.; Sha, G.; Lewandowski, J. J.; Liaw, P. K.; Zhang, Y. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater. 2017, 123, 285–294.
Li, Z. Z.; Zhao, S. T.; Ritchie, R. O.; Meyers, M. A. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater. Sci. 2019, 102, 296–345.
Schneeweiss, O.; Friák, M.; Dudová, M.; Holec, D.; Šob, M.; Kriegner, D.; Holý, V.; Beran, P.; George, E. P.; Neugebauer, J. et al. Magnetic properties of the CrMnFeCoNi high-entropy alloy. Phys. Rev. B 2017, 96, 014437.
Gaertner, D.; Abrahams, K.; Kottke, J.; Esin, V. A.; Steinbach, I.; Wilde, G.; Divinski S. V. Concentration-dependent atomic mobilities in FCC CoCrFeMnNi high-entropy alloys. Acta Mater. 2019, 166, 357–370.
Pogrebnjak, A. D.; Bagdasaryan, A. A.; Yakushchenko, I. V.; Beresnev, V. M. The structure and properties of high-entropy alloys and nitride coatings based on them. Russ. Chem. Rev. 2014, 83, 1027–1061.
Marshal, A.; Pradeep, K. G.; Music, D.; Wang, L.; Petracic, O.; Schneider, J. M. Combinatorial evaluation of phase formation and magnetic properties of FeMnCoCrAl high entropy alloy thin film library. Sci. Rep. 2019, 9, 7864.
Niu, C.; Zaddach, A. J.; Oni, A. A.; Sang, X.; Hurt, J. W.; LeBeau, J. M.; Koch, C. C.; Irving, D. L. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo. Appl. Phys. Lett. 2015, 106, 161906.
Meisenheimer, P. B.; Williams, L. D.; Sung, S. H.; Gim, J.; Shafer, P.; Kotsonis, G. N.; Maria, J. P.; Trassin, M.; Hovden, R.; Kioupakis, E. et al. Magnetic frustration control through tunable stereochemically driven disorder in entropy-stabilized oxides. Phys. Rev. Mater. 2019, 3, 104420.
Kotsonis, G. N.; Meisenheimer, P. B.; Miao, L. X.; Roth, J.; Wang, B. M.; Shafer, P.; Engel-Herbert, R.; Alem, N.; Heron, J. T.; Rost, C. M. et al. Property and cation valence engineering in entropy-stabilized oxide thin films. Phys. Rev. Mater. 2020, 4, 100401(R).
Tung, C. C.; Yeh, J. W.; Shun. T. T.; Chen, S. K.; Huang, Y. S.; Chen, H. C. On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater. Lett. 2007, 61, 1–5.
Wang, W. R.; Wang, W. L.; Wang, S. C.; Tsai, Y. C.; Lai, C. H.; Yeh, J. W. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 2012, 26, 44–51.
Li, C.; Li, J. C.; Zhao, M.; Jiang, Q. Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys. J. Alloys Compd. 2010, 504, S515–S518.
Kao, Y. F.; Chen, T. J.; Chen, S. K.; Yeh, J. W. Microstructure and mechanical property of as-cast, -homogenized, and-deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J. Alloys Compd. 2009, 488, 57–64.
Cieslak, J.; Tobola, J.; Reissne, M. The effect of bcc/fcc phase preference on magnetic properties of AlxCrFeCoNi high entropy alloys. Intermetallics 2020, 118, 106672.
Yusenko, K. V.; Riva, S.; Crichton, W. A.; Spektor, K.; Bykova, E.; Pakhomova, A.; Tudball, A.; Kupenko, I.; Rohrbach, A.; Klemme, S. et al. High-pressure high-temperature tailoring of high entropy alloys for extreme environments. J. Alloys Compd. 2018, 738, 491–500.
Riva, S.; Mehraban, S.; Lavery, N. P.; Schwarzmüller, S.; Oeckler, O.; Brown, S. G. R.; Yusenko K. V. The effect of scandium ternary intergrain precipitates in Al-containing high-entropy alloys. Entropy 2018, 20, 488.
Riva, S.; Tudball, A.; Mehraban, S.; Lavery, N. P.; Brown, S. G. R.; Yusenko, K. V. A novel high-entropy alloy-based composite material. J. Alloys Compd. 2018, 730, 544–551.
Zhang, F. X.; Tong, Y.; Jin, K.; Bei, H. B.; Weber, W. J.; Zhang, Y. W. Lattice distortion and phase stability of Pd-doped NiCoFeCr solid-solution alloys. Entropy 2018, 20, 900.
Zhang, F. X.; Tong, Y.; Jin, K.; Bei, H. B.; Weber, W. J.; Huq, A.; Lanzirotti, A.; Newville, M.; Pagan, D. C.; Ko, J. Y. P. Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy. Mater. Res. Lett. 2018, 6, 450–455.
Oh, H. S.; Ma, D. C.; Leyson, G. P.; Grabowski, B.; Park, E. S.; Körmann, F.; Raabe, D. Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment. Entropy 2016, 18, 321.
Maulik, O.; Patra, N.; Bhattacharyya, D.; Jha, S. N.; Kumar, V. Local atomic structure investigation of AlFeCuCrMgx (0.5, 1, 1.7) high entropy alloys: X-ray absorption spectroscopy study. Solid State Commun. 2017, 252, 73–77.
Körmann, F.; Ma, D.; Belyea, D. D.; Lucas, M. S.; Miller, C. W.; Grabowski, B.; Sluiter, M. H. F. “Treasure maps” for magnetic high-entropy-alloys from theory and experiment. Appl. Phys. Lett. 2015, 107, 142404.
Cieslak, J.; Tobola, J.; Przewoznik, J.; Berent, K.; Dahlborg, U.; Cornide, J.; Mehraban, S.; Lavery, N.; Calvo-Dahlborg, M. Multi-phase nature of sintered vs. arc-melted CrxAlFeCoNi high entropy alloys-experimental and theoretical study. J. Alloys Compd. 2019, 801, 511–519.
Wang, H. L.; Gao, T. X.; Niu, J. Z.; Shi, P. J.; Xu, J.; Wang, Y. Microstructure, thermal properties, and corrosion behaviors of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering. Int. J. Miner. Metall. Mater. 2016, 23, 77–82.
Mohanty, S.; Gurao, N. P.; Biswas, K. Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 high entropy alloy via mechanical alloying. Mater. Sci. Eng. A 2014, 617, 211–218.
Zhang, A. J.; Han, J. S.; Meng, J. H.; Su, B.; Li, P. D. Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture. Mater. Lett. 2016, 181, 82–85.
Tracy, C. L.; Park, S.; Rittman, D. R.; Zinkle, S. J.; Bei, H. B.; Lang, M.; Ewing, R. C.; Mao, W. L. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 2017, 8, 15634.
Riesemeier, H.; Ecker, K.; Görner, W.; Müller, B. R.; Radtke, M.; Krumrey, M. Layout and first XRF applications of the BAMline at BESSY II. X-Ray Spectrom. 2005, 34, 160–163.
Timoshenko, J.; Kuzmin, A.; Purans, J. Reverse Monte Carlo modeling of thermal disorder in crystalline materials from EXAFS spectra. Comput. Phys. Commun. 2012, 183, 1237–1245.
Timoshenko, J.; Kuzmin, A.; Purans, J. EXAFS study of hydrogen intercalation into ReO3 using the evolutionary algorithm. J. Phys. Condens. Matter 2014, 26, 055401.
Kuzmin, A.; Chaboy, J. EXAFS and XANES analysis of oxides at the nanoscale. IUCrJ. 2014, 1, 571–589.
Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B. 1998, 58, 7565–7576.
Rehr, J. J.; Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 2000, 72, 621–654.
Hedin, L.; Lundqvist, B. I. Explicit local exchange-correlation potentials. J. Phys. C: Solid State Phys. 1971, 4, 2064–2083.
Englisch, U.; Rossner, H.; Maletta, H.; Bahrdt, J.; Sasaki, S.; Senf, F.; Sawhney, K. J. S.; Gudat, W. The elliptical undulator UE46 and its monochromator beam-line for structural research on nanomagnets at BESSY-II. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectr., Detect. Ass. Equip. 2001, 467-468, 541–544.
Poletti, M. G.; Branz, S.; Fiore, G.; Szost, B. A.; Crichton, W. A.; Battezzati, L. Equilibrium high entropy phases in X–NbTaTiZr (X = Al, V, Cr and Sn) multiprincipal component alloys. J. Alloys Compd. 2016, 655, 138–146.
Timoshenko, J.; Kuzmin, A. Wavelet data analysis of EXAFS spectra. Comput. Phys. Commun. 2009, 180, 920–925.
Funke, H.; Scheinost, A. C.; Chukalina, M. Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 2005, 71, 094110.
La Torre, E.; Smekhova, A.; Schmitz-Antoniak, C.; Ollefs, K.; Eggert, B.; Cöster, B.; Walecki, D.; Wilhelm, F.; Rogalev, A.; Lindner, J. et al. Local probe of irradiation-induced structural changes and orbital magnetism in Fe60Al40 thin films via an order-disorder phase transition. Phys. Rev. B 2018, 98, 024101.
Antoniak, C. Extended X-ray absorption fine structure of bimetallic nanoparticles. Beilstein J. Nanotechnol. 2011, 2, 237–251.
Kuzmin, A.; Timoshenko, J.; Kalinko, A.; Jonane, I.; Anspoks, A. Treatment of disorder effects in X-ray absorption spectra beyond the conventional approach. Radiat. Phys. Chem. 2020, 175, 108112.
Nascimento, C. B.; Donatus, U.; Ríos, C. T.; Antunes, R. A. Electronic properties of the passive films formed on CoCrFeNi and CoCrFeNiAl high entropy alloys in sodium chloride solution. J. Mater. Res. Technol. 2020, 9, 13879–13892.
Shi, Y. Z.; Yang, B.; Rack, P. D.; Guo, S. F.; Liaw, P. K.; Zhao, Y. High-throughput synthesis and corrosion behavior of sputter-deposited nanocrystalline Alx(CoCrFeNi)100-x combinatorial high-entropy alloys. Mater. Des. 2020, 195, 109018.
Botton, G. A.; Guo, G. Y.; Temmerman, W. M.; Humphreys, C. J. Experimental and theoretical study of the electronic structure of Fe, Co, and Ni aluminides with the B2 structure. Phys. Rev. B 1996, 54, 1682–1691.
Anne, B. R.; Shaik, S.; Tanaka, M.; Basu, A. A crucial review on recent updates of oxidation behavior in high entropy alloys. SN Appl. Sci. 2021, 3, 366.
Chaudhary, V.; Soni, V.; Gwalani, B.; Ramanujan, R. V.; Banerjee, R. Influence of non-magnetic Cu on enhancing the low temperature magnetic properties and Curie temperature of FeCoNiCrCux high entropy alloys. Scr. Mater. 2020, 182, 99–103.
Thole, B. T.; Carra, P.; Sette, F.; van der Laan, G. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 1992, 68, 1943–1946.
Carra, P.; Thole, B. T.; Altarelli, M.; Wang, X. D. X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 1993, 70, 694–697.
Meyer, J.; Tombers, M.; van Wüllen, C.; Niedner-Schatteburg, G.; Peredkov, S.; Eberhardt, W.; Neeb, M.; Palutke, S.; Martins, M.; Wurth, W. The spin and orbital contributions to the total magnetic moments of free Fe, Co, and Ni clusters. J. Chem. Phys 2015, 143, 104302.
Söderlind, P.; Eriksson, O.; Johansson, B.; Albers, R. C.; Boring, A. M. Spin and orbital magnetism in Fe-Co and Co-Ni alloys. Phys. Rev. B 1992, 45, 12911–12916.
Wu, R. Q.; Freeman, A. J. Limitation of the magnetic-circular-dichroism spin sum rule for transition metals and importance of the magnetic dipole term. Phys. Rev. Lett. 1994, 73, 1994–1997.
Langenberg, A.; Hirsch, K.; Ławicki, A.; Zamudio-Bayer, V.; Niemeyer, M.; Chmiela, P.; Langbehn, B.; Terasaki, A.; Issendorff, B. V.; Lau, J. T. Spin and orbital magnetic moments of size-selected iron, cobalt, and nickel clusters. Phys. Rev. B 2014, 90, 184420.
Timoshenko, J.; Keller, K. R.; Frenkel, A. I. Determination of bimetallic architectures in nanometer-scale catalysts by combining molecular dynamics simulations with X-ray absorption spectroscopy. J. Chem.Phys. 2017, 146, 114201.
Timoshenko, J.; Jeon, H. S.; Sinev, I.; Haase, F. T.; Herzog, A.; Cuenya, B. R. Linking the evolution of catalytic properties and structural changes in copper–zinc nanocatalysts using operando EXAFS and neural-networks. Chem. Sci. 2020, 11, 3727–3736.
Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303.
1410
Views
55
Downloads
14
Crossref
15
Web of Science
15
Scopus
0
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.