AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced dual plasmonic photocatalysis through plasmonic coupling in eccentric noble metal–nonstoichiometric copper chalcogenide hetero-nanostructures

Mariia Ivanchenko1Vida Nooshnab2Alline F. Myers3Nicolas Large2Andrew J. Evangelista1Hao Jing1( )
Department of Chemistry and BiochemistryGeorge Mason UniversityFairfax, Virginia22030USA
Department of Physics and AstronomyThe University of Texas at San AntonioSan Antonio, TX78249USA
National Institute of Standards and Technology (NIST)100 Bureau Dr., GaithersburgMaryland20899USA
Show Author Information

Graphical Abstract

Abstract

The extension of plasmonics to materials beyond the conventional noble metals opens up a novel and exciting regime after the inspiring discovery of characteristic localized surface plasmon resonances (LSPRs) in doped semiconductor nanocrystals originating from the collective oscillations of free holes in the valence band. We herein prepare colloidal monodisperse eccentric dual plasmonic noble metal-nonstoichiometric copper chalcogenide (Au@Cu2–xSe) hybrid hetero-nanostructures with precisely controlled semiconductor shell size and two tunable LSPRs in both visible (VIS) and near-infrared (NIR) regions associated with Au and Cu2–xSe, respectively. Through systematic evaluations of the photocatalytic performance of Au@Cu2–xSe upon sole NIR and dual VIS + NIR simultaneous excitations, we are capable of unambiguously elucidating the role of plasmonic coupling between two dissimilar building blocks on the accelerated photocatalytic reactions with greater rate constants from both experimental and computational perspectives. The significantly enhanced strength of the electromagnetic field arising from efficient plasmonic coupling under the excitation of two LSPRs results in the superior activities of dual plasmonic Au@Cu2–xSe in photocatalysis. The new physical and chemical insights gained from this work provide the keystone for the rational design and construction of high-quality dual- or even multi-plasmonic nano-systems with optimized properties for widespread applications ranging from photocatalysis to molecular spectroscopies.

Electronic Supplementary Material

Download File(s)
12274_2021_3705_MOESM1_ESM.pdf (6.3 MB)

References

1

Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.

2

Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442-453.

3

Giannini, V.; Fernández-Domínguez, A. I.; Heck, S. C.; Maier, S. A. Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 2011, 111, 3888-3912.

4

Wang, H.; Brandl, D. W.; Nordlander, P.; Halas, N. J. Plasmonic nanostructures: Artificial molecules. Acc. Chem. Res. 2007, 40, 53-62.

5

Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578-1586.

6

Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669-3712.

7

Zhou, W.; Gao, X.; Liu, D. B.; Chen, X. Y. Gold nanoparticles for in vitro diagnostics. Chem. Rev. 2015, 115, 10575-10636.

8

Comin, A.; Manna, L. New materials for tunable plasmonic colloidal nanocrystals. Chem. Soc. Rev. 2014, 43, 3957-3975.

9

Faucheaux, J. A.; Stanton, A. L. D.; Jain, P. K. Plasmon resonances of semiconductor nanocrystals: Physical principles and new opportunities. J. Phys. Chem. Lett. 2014, 5, 976-985.

10

Zhao, Y. X.; Pan, H. C.; Lou, Y. B.; Qiu, X. F.; Zhu, J. J.; Burda, C. Plasmonic Cu2-xS nanocrystals: Optical and structural properties of copper-deficient copper(I) sulfides. J. Am. Chem. Soc. 2009, 131, 4253-4261.

11

Luther, J. M.; Jain, P. K.; Ewers, T.; Alivisatos, A. P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 2011, 10, 361-366.

12

Hsu, S. W.; On, K.; Tao, A. R. Localized surface plasmon resonances of anisotropic semiconductor nanocrystals. J. Am. Chem. Soc. 2011, 133, 19072-19075.

13

Dorfs, D.; Härtling, T.; Miszta, K.; Bigall, N. C.; Kim, M. R.; Genovese, A.; Falqui, A.; Povia, M.; Manna, L. Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals. J. Am. Chem. Soc. 2011, 133, 11175-11180.

14

Kriegel, I.; Jiang, C. Y.; Rodríguez-Fernández, J.; Schaller, R. D.; Talapin, D. V.; da Como, E.; Feldmann, J. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. J. Am. Chem. Soc. 2012, 134, 1583-1590.

15

Li, W. H.; Zamani, R.; Gil, P. R.; Pelaz, B.; Ibáñez, M.; Cadavid, D.; Shavel, A.; Alvarez-Puebla, R. A.; Parak, W. J.; Arbiol, J. et al. Cute nanocrystals: Shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J. Am. Chem. Soc. 2013, 135, 7098-7101.

16

Xie, Y.; Carbone, L.; Nobile, C.; Grillo, V.; D'Agostino, S.; Della Sala, F.; Giannini, C.; Altamura, D.; Oelsner, C.; Kryschi, C. et al. Metallic-like stoichiometric copper sulfide nanocrystals: Phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling. ACS Nano 2013, 7, 7352-7369.

17

Córdova-Castro, R. M.; Casavola, M.; van Schilfgaarde, M.; Krasavin, A. V.; Green, M. A.; Richards, D.; Zayats, A. V. Anisotropic plasmonic CuS nanocrystals as a natural electronic material with hyperbolic optical dispersion. ACS Nano 2019, 13, 6550-6560.

18

Liu, Y.; Liu, M. X.; Swihart, M. T. Plasmonic copper sulfide-based materials: A brief introduction to their synthesis, doping, alloying, and applications. J. Phys. Chem. C 2017, 121, 13435-13447.

19

Chen, J.; Liu, T. Y.; Bao, D. Y.; Zhang, B.; Han, G.; Liu, C.; Tang, J.; Zhou, D. L.; Yang, L.; Chen, Z. G. Nanostructured monoclinic Cu2Se as a near-room-temperature thermoelectric material. Nanoscale 2020, 12, 20536-20542.

20

Min, Y.; Im, E.; Hwang, G. T.; Kim, J. W.; Ahn, C. W.; Choi, J. J.; Hahn, B. D.; Choi, J. H.; Yoon, W. H.; Park, D. S. et al. Heterostructures in two-dimensional colloidal metal chalcogenides: Synthetic fundamentals and applications. Nano Res. 2019, 12, 1750-1769.

21

Liu, X.; Swihart, M. T. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: An emerging new class of plasmonic nanomaterials. Chem. Soc. Rev. 2014, 43, 3908-3920.

22

Manthiram, K.; Alivisatos, A. P. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am Chem. Soc. 2012, 134, 3995-3998.

23

Ye, X. C.; Fei, J. Y.; Diroll, B. T.; Paik, T.; Murray, C. B. Expanding the spectral tunability of plasmonic resonances in doped metal-oxide nanocrystals through cooperative cation-anion codoping. J. Am Chem. Soc. 2014, 136, 11680-11686.

24

Ye, X. C.; Hickey, D. R.; Fei, J. Y.; Diroll, B. T.; Paik, T.; Chen, J.; Murray, C. B. Seeded growth of metal-doped plasmonic oxide heterodimer nanocrystals and their chemical transformation. J. Am. Chem. Soc. 2014, 136, 5106-5115.

25

Liu, Z. K.; Zhong, Y. X.; Shafei, I.; Jeong, S.; Wang, L. G.; Nguyen, H. T.; Sun, C. J.; Li, T.; Chen, J.; Chen, L. et al. Broadband tunable mid-infrared plasmon resonances in cadmium oxide nanocrystals induced by size-dependent nonstoichiometry. Nano Lett. 2020, 20, 2821-2828.

26

Liu, Z. K.; Zhong, Y. X.; Shafei, I.; Borman, R.; Jeong, S.; Chen, J.; Losovyj, Y.; Gao, X. F.; Li, N.; Du, Y. P. et al. Tuning infrared plasmon resonances in doped metal-oxide nanocrystals through cation-exchange reactions. Nat. Commun. 2019, 10, 1394.

27

Palomaki, P. K. B.; Miller, E. M.; Neale, N. R. Control of plasmonic and interband transitions in colloidal indium nitride nanocrystals. J. Am. Chem. Soc. 2013, 135, 14142-14150.

28

Guler, U.; Shalaev, V. M.; Boltasseva, A. Nanoparticle plasmonics: Going practical with transition metal nitrides. Mater. Today 2015, 18, 227-237.

29

Manna, G.; Bose, R.; Pradhan, N. Semiconducting and plasmonic copper phosphide platelets. Angew. Chem. , Int. Ed. 2013, 52, 6762-6766.

30

Large, N.; Abb, M.; Aizpurua, J.; Muskens, O. L. Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches. Nano Lett. 2010, 10, 1741-1746.

31

Agrawal, A.; Cho, S. H.; Zandi, O.; Ghosh, S.; Johns, R. W.; Milliron, D. J. Localized surface plasmon resonance in semiconductor nanocrystals. Chem. Rev. 2018, 118, 3121-3207.

32

Balitskii, O. A.; Sytnyk, M.; Stangl, J.; Primetzhofer, D.; Groiss, H.; Heiss, W. Tuning the localized surface plasmon resonance in Cu2-xSe nanocrystals by postsynthetic ligand exchange. ACS Appl. Mater. Interfaces 2014, 6, 17770-17775.

33

Nelson, A.; Ha, D. H.; Robinson, R. D. Selective etching of copper sulfide nanoparticles and heterostructures through sulfur abstraction: Phase transformations and optical properties. Chem. Mater. 2016, 28, 8530-8541.

34

Xu, W.; Liu, H. C.; Zhou, D. L.; Chen, X.; Ding, N.; Song, H. W.; Ågren, H. Localized surface plasmon resonances in self-doped copper chalcogenide binary nanocrystals and their emerging applications. Nano Today 2020, 33, 100892.

35

Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957-1962.

36

Murphy, C. J.; Jana, N. R. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 2002, 14, 80-82.

37

Xia, X. H.; Zeng, J.; Oetjen, L. K.; Li, Q. G.; Xia, Y. N. Quantitative analysis of the role played by poly(vinylpyrrolidone) in seed- mediated growth of Ag nanocrystals. J. Am. Chem. Soc. 2012, 134, 1793-1801.

38

Chen, J.; Wiley, B.; Li, Z. Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee, J.; Li, X.; Xia, Y. Gold nanocages: Engineering their structure for biomedical applications. Adv. Mater. 2005, 17, 2255-2261.

39

Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901-1903.

40

Chen, S. H.; Carroll, D. L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett. 2002, 2, 1003-1007.

41

Nehl, C. L.; Liao, H. W.; Hafner, J. H. Optical properties of star-shaped gold nanoparticles. Nano Lett. 2006, 6, 683-688.

42

Aizpurua, J.; Hanarp, P.; Sutherland, D. S.; Käll, M.; Bryant, G. W.; de Abajo, F. J. G. Optical properties of gold nanorings. Phys. Rev. Lett. 2003, 90, 057401.

43

Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419-422.

44

Xia, Y. N.; Halas, N. J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 2005, 30, 338-348.

45

Ou, W. H.; Zou, Y.; Wang, K. W.; Gong, W. B.; Pei, R. J.; Chen, L. W.; Pan, Z. H.; Fu, D. D.; Huang, X.; Zhao, Y. F. et al. Active manipulation of NIR plasmonics: The case of Cu2-xSe through electrochemistry. J. Phys. Chem. Lett. 2018, 9, 274-280.

46

Jain, P. K.; Manthiram, K.; Engel, J. H.; White, S. L.; Faucheaux, J. A.; Alivisatos, A. P. Doped nanocrystals as plasmonic probes of redox chemistry. Angew. Chem., Int. Ed. 2013, 52, 13671-13675.

47

Wei, T. X.; Liu, Y. F.; Dong, W. J.; Zhang, Y.; Huang, C. Y.; Sun, Y.; Chen, X.; Dai, N. Surface-dependent localized surface plasmon resonances in CuS nanodisks. ACS Appl. Mater. Interfaces 2013, 5, 10473-10477.

48

Muhammed, M. A. H.; Döblinger, M.; Rodríguez-Fernández, J. Switching plasmons: Gold nanorod-copper chalcogenide core-shell nanoparticle clusters with selectable metal/semiconductor NIR plasmon resonances. J. Am. Chem. Soc. 2015, 137, 11666-11677.

49

Kim, Y.; Park, K. Y.; Jang, D. M.; Song, Y. M.; Kim, H. S.; Cho, Y. J.; Myung, Y.; Park, J. Synthesis of Au-Cu2S core-shell nanocrystals and their photocatalytic and electrocatalytic activity. J. Phys. Chem. C 2010, 114, 22141-22146.

50

Zou, Y.; Sun, C.; Gong, W. B.; Yang, X. F.; Huang, X.; Yang, T.; Lu, W. B.; Jiang, J. Morphology-controlled synthesis of hybrid nanocrystals via a selenium-mediated strategy with ligand shielding effect: The case of dual plasmonic Au-Cu2-xSe. ACS Nano 2017, 11, 3776-3785.

51

Shan, B. B.; Zhao, Y. W.; Li, Y. W.; Wang, H. T.; Chen, R.; Li, M. High-quality dual-plasmonic Au@Cu2-xSe nanocrescents with precise Cu2-xSe domain size control and tunable optical properties in the second near-infrared biowindow. Chem. Mater. 2019, 31, 9875-9886.

52

Li, Y. Y.; Pan, G. M.; Liu, Q. Y.; Ma, L.; Xie, Y.; Zhou, L.; Hao, Z. H.; Wang, Q. Q. Coupling resonances of surface plasmon in gold nanorod/copper chalcogenide core-shell nanostructures and their enhanced photothermal effect. ChemPhysChem 2018, 19, 1852-1858.

53

Cui, J. B.; Jiang, R.; Guo, C.; Bai, X. L.; Xu, S. Y.; Wang, L. Y. Fluorine grafted Cu7S4-Au heterodimers for multimodal imaging guided photothermal therapy with high penetration depth. J. Am. Chem. Soc. 2018, 140, 5890-5894.

54

Liu, X.; Lee, C.; Law, W. C.; Zhu, D. W.; Liu, M. X.; Jeon, M.; Kim, J.; Prasad, P. N.; Kim, C.; Swihart, M. T. Au-Cu2-xSe heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging. Nano Lett. 2013, 13, 4333- 4339.

55

Zhang, S. H.; Huang, Q.; Zhang, L. J.; Zhang, H.; Han, Y. B.; Sun, Q.; Cheng, Z. X.; Qin, H. Z.; Dou, S. X.; Li, Z. Vacancy engineering of Cu2-xSe nanoparticles with tunable LSPR and magnetism for dual- modal imaging guided photothermal therapy of cancer. Nanoscale 2018, 10, 3130-3143.

56

Ji, M. W.; Xu, M.; Zhang, W.; Yang, Z. Z.; Huang, L.; Liu, J. J.; Zhang, Y.; Gu, L.; Yu, Y. X.; Hao, W. C. et al. Structurally well-defined Au@Cu2-xS core-shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency. Adv. Mater. 2016, 28, 3094-3101.

57

Lv, Q.; Min, H.; Duan, D. B.; Fang, W.; Pan, G. M.; Shen, A. G.; Wang, Q. Q.; Nie, G. J.; Hu, J. M. Total aqueous synthesis of Au@Cu2-xS core-shell nanoparticles for in vitro and in vivo SERS/PA imaging- guided photothermal cancer therapy. Adv. Healthc. Mater. 2019, 8, 1801257.

58

Ding, X. G.; Liow, C. H.; Zhang, M. X.; Huang, R. J.; Li, C. Y.; Shen, H.; Liu, M. Y.; Zou, Y.; Gao, N.; Zhang, Z. J. et al. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 2014, 136, 15684-15693.

59

Zhu, H.; Wang, Y.; Chen, C.; Ma, M. R.; Zeng, J. F.; Li, S. Z.; Xia, Y. S.; Gao, M. Y. Monodisperse dual plasmonic Au@Cu2-xE (E = S, Se) core@shell Supraparticles: Aqueous fabrication, multimodal imaging, and tumor therapy at in vivo level. ACS Nano 2017, 11, 8273-8281.

60

Sun, M. Q.; Fu, X. Q.; Chen, K. X.; Wang, H. Dual-plasmonic gold@copper sulfide core-shell nanoparticles: Phase-selective synthesis and multimodal photothermal and photocatalytic behaviors. ACS Appl. Mater. Interfaces 2020, 12, 46146-46161.

61

Ma, L.; Chen, Y. L.; Yang, X.; Li, H. X.; Ding, S. J.; Hou, H. Y.; Xiong, L.; Qin, P. L.; Chen, X. B. Growth behavior of Au/Cu2-xS hybrids and their plasmon-enhanced dual-functional catalytic activity. CrystEngComm 2019, 21, 5610-5617.

62

Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370-4379.

63

Liu, Y.; Zhu, D. W.; Hu, Y. J.; Swihart, M. T.; Wei, W. Controlled synthesis of Cu2-xSe nanoparticles as near-infrared photothermal agents and irradiation wavelength dependence of their photothermal conversion efficiency. Langmuir 2018, 34, 13905-13909.

64

De Ruijter, W. J.; Sharma, R.; McCartney, M. R.; Smith, D. J. Measurement of lattice-fringe vectors from digital HREM images-experimental precision. Ultramicroscopy 1995, 57, 409-422.

65

Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 2006, 96, 113002.

Nano Research
Pages 1579-1586
Cite this article:
Ivanchenko M, Nooshnab V, Myers AF, et al. Enhanced dual plasmonic photocatalysis through plasmonic coupling in eccentric noble metal–nonstoichiometric copper chalcogenide hetero-nanostructures. Nano Research, 2022, 15(2): 1579-1586. https://doi.org/10.1007/s12274-021-3705-4
Topics:

593

Views

33

Crossref

32

Web of Science

32

Scopus

1

CSCD

Altmetrics

Received: 15 March 2021
Revised: 28 May 2021
Accepted: 21 June 2021
Published: 08 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return