AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Bioinspired flexible, high-strength, and versatile hydrogel with the fiberboard-and-mortar hierarchically ordered structure

Han-Ping Yu1,2Ying-Jie Zhu1,2( )
State Key Laboratory of High Performance Ceramics and Superfine Microstructure,Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai,200050,China;
Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences, Beijing,100049,China;
Show Author Information

Graphical Abstract

Abstract

The synthetic hydrogels with high water contents are promising for various applications, however, they usually exhibit low mechanical properties. In this work, inspired by the natural biological soft tissues, whose hierarchically ordered fibrous structures result in high strength and good flexibility, a flexible, high-strength, and versatile hydrogel with the fiberboard-and-mortar hierarchically ordered structure (HFMOS) is developed based on ultralong hydroxyapatite (HAP) nanowires and polyacrylic acid (PAA). The as-prepared HFMOS hydrogel has a high water content (~ 70 wt.%), dense structure, and excellent mechanical properties, and these properties are similar to those of the human cartilage and are superior to many hydrogels reported in the literature. The excellent mechanical properties of the HFMOS hydrogel originate from the combination of the fiberboard-and-mortar hierarchically ordered structure, reinforcement of ultralong HAP nanowires, strong interfacial strength, and multiple energy dissipation pathways. Moreover, thanks to the controllable components and injection procedure, the HFMOS hydrogel with a Janus structure is prepared for particular applications. The HFMOS hydrogel possesses abundant ordered water channels, and can be used for loading, release, and directed delivery of various functional substances. Thus, the as-prepared flexible, high-strength, and versatile HFMOS hydrogel possesses a great potential for various applications such as water purification, pollution treatment, biomedicine, nanofluidic devices, and high-performance structural materials.

Electronic Supplementary Material

Download File(s)
12274_2021_3714_MOESM1_ESM.pdf (7.8 MB)

References

1

Zhang, Y. S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, eaaf3627

2

Huang, X. Y.; Zhou, X. F.; Zhou, H. F.; Zhong, Y. D.; Luo, H.; Zhang, F. A high-strength self-healing nano-silica hydrogel with anisotropic differential conductivity. Nano Res. 2021, 14, 2589-2595.

3

Lei, W. W.; Khan, S.; Chen, L.; Suzuki, N.; Terashima, C.; Liu, K. S.; Fujishima, A.; Liu, M. J. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation. Nano Res. 2021, 14, 1135-1140.

4

Rauner, N.; Meuris, M.; Zoric, M.; Tiller, J. C. Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics. Nature 2017, 543, 407-410.

5

Luo, Y. X.; Lode, A.; Akkineni, A. R.; Gelinsky, M. Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. RSC Adv. 2015, 5, 43480-43488.

6

Si, L. Q.; Zheng, X. W.; Nie, J.; Yin, R. X.; Hua, Y. J.; Zhu, X. Q. Silicone-based tough hydrogels with high resilience, fast self-recovery, and self-healing properties. Chem. Commun. 2016, 52, 8365-8368.

7

Teng, C.; Qiao, J. L.; Wang, J. F.; Jiang, L.; Zhu, Y. Hierarchical layered heterogeneous graphene-poly(N-isopropylacrylamide)-clay hydrogels with superior modulus, strength, and toughness. ACS Nano 2016, 10, 413-420.

8

Gao, G. R.; Du, G. L.; Sun, Y. N.; Fu, J. Self-healable, tough, and ultrastretchable nanocomposite hydrogels based on reversible polyacrylamide/montmorillonite adsorption. ACS Appl. Mater. Interfaces 2015, 7, 5029-5037.

9

Han, L.; Liu, K. Z.; Wang, M. H.; Wang, K. F.; Fang, L. M.; Chen, H. T.; Zhou, J.; Lu, X. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv. Funct. Mater. 2018, 28, 1704195.

10

Jin, X. Q.; Jiang, H. H.; Li, G. Q.; Fu, B. J.; Bao, X. J.; Wang, Z. K.; Hu, Q. L. Stretchable, conductive PAni-PAAm-GOCS hydrogels with excellent mechanical strength, strain sensitivity and skin affinity. Chem. Eng. J. 2020, 394, 124901.

11

Zhou, Y.; Wan, C. J.; Yang, Y. S.; Yang, H.; Wang, S. C.; Dai, Z. D.; Ji, K. J.; Jiang, H.; Chen, X. D.; Long, Y. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 2019, 29, 1806220.

12

Guan, Q. F.; Han, Z. M.; Zhu, Y.; Xu, W. L.; Yang, H. B.; Ling, Z. C.; Yan, B. B.; Yang, K. P.; Yin, C. H.; Wu, H. et al. Bio-inspired lotus-fiber-like spiral hydrogel bacterial cellulose fibers. Nano Lett. 2021, 21, 952-958.

13

Guan, Q. F.; Yang, H. B.; Han, Z. M.; Ling, Z. C.; Yu, S. H. An all-natural bioinspired structural material for plastic replacement. Nat. Commun. 2020, 11, 5401.

14

Guan, Q. F.; Yang, H. B.; Han, Z. M.; Zhou, L. C.; Zhu, Y. B.; Ling, Z. C.; Jiang, H. B.; Wang, P. F.; Ma, T.; Wu, H. A. et al. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Sci. Adv. 2020, 6, eaaz1114.

15

Zhao, Z. G.; Fang, R. C.; Rong, Q. F.; Liu, M. J. Bioinspired nanocomposite hydrogels with highly ordered structures. Adv. Mater. 2017, 29, 1703045.

16

Mredha, M. T. I.; Guo, Y. Z.; Nonoyama, T.; Nakajima, T.; Kurokawa, T.; Gong, J. P. A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv. Mater. 2018, 30, 1704937.

17

Kong, W. Q.; Wang, C. W.; Jia, C.; Kuang, Y. D.; Pastel, G.; Chen, C. J.; Chen, G.; He, S. M.; Huang, H.; Zhang, J. H. et al. Muscle- inspired highly anisotropic, strong, ion-conductive hydrogels. Adv. Mater. 2018, 30, 1801934.

18

Maghsoudi-Ganjeh, M.; Wang, X. D.; Zeng, X. W. Computational investigation of the effect of water on the nanomechanical behavior of bone. J. Mech. Behav. Biomed. Mater. 2020, 101, 103454.

19

Sun, T. W.; Yu, W. L.; Zhu, Y. J.; Yang, R. L.; Shen, Y. Q.; Chen, D. Y.; He, Y. H.; Chen, F. Hydroxyapatite nanowire@magnesium silicate core-shell hierarchical nanocomposite: Synthesis and application in bone regeneration. ACS Appl. Mater. Interfaces 2017, 9, 16435- 16447.

20

Sun, T. W.; Zhu, Y. J.; Chen, F. Hydroxyapatite nanowire/collagen elastic porous nanocomposite and its enhanced performance in bone defect repair. RSC Adv. 2018, 8, 26218-26229.

21

Yu, H. P.; Zhu, Y. J.; Lu, B. Q. Dental enamel-mimetic large-sized multi-scale ordered architecture built by a well controlled bottom-up strategy. Chem. Eng. J. 2019, 360, 1633-1645.

22

Lu, B. Q.; Zhu, Y. J.; Chen, F. Highly flexible and nonflammable inorganic hydroxyapatite paper. Chem. —Eur. J. 2014, 20, 1242-1246.

23

Li, H.; Wu, D. B.; Wu, J.; Dong, L. Y.; Zhu, Y. J.; Hu, X. L. Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries. Adv. Mater. 2017, 29, 1703548.

24

Chen, F. F.; Zhu, Y. J.; Chen, F.; Dong, L. Y.; Yang, R. L.; Xiong, Z. C. Fire alarm wallpaper based on fire-resistant hydroxyapatite nanowire inorganic paper and graphene oxide thermosensitive sensor. ACS Nano 2018, 12, 3159-3171.

25

Yu, H. P.; Zhu, Y. J.; Xiong, Z. C.; Lu, B. Q. Bioinspired fiberboard- and-mortar structural nanocomposite based on ultralong hydroxyapatite nanowires with high mechanical performance. Chem. Eng. J. 2020, 399, 125666.

26

Yu, Y. D.; He, Y.; Mu, Z.; Zhao, Y. Q.; Kong, K. R.; Liu, Z. M.; Tang, R. K. Biomimetic mineralized organic-inorganic hybrid macrofiber with spider silk-like supertoughness. Adv. Funct. Mater. 2020, 30, 1908556.

27

Gan, S. C.; Lin, W. N.; Zou, Y. L.; Xu, B.; Zhang, X.; Zhao, J. H.; Rong, J. H. Nano-hydroxyapatite enhanced double network hydrogels with excellent mechanical properties for potential application in cartilage repair. Carbohydr. Polym. 2020, 229, 115523.

28

Jiang, Y. Y.; Zhu, Y. J.; Li, H.; Zhang, Y. G.; Shen, Y. Q.; Sun, T. W.; Chen, F. Preparation and enhanced mechanical properties of hybrid hydrogels comprising ultralong hydroxyapatite nanowires and sodium alginate. J. Colloid Interface Sci. 2017, 497, 266-275.

29

Fukao, K.; Nonoyama, T.; Kiyama, R.; Furusawa, K.; Kurokawa, T.; Nakajima, T.; Gong, J. P. Anisotropic growth of hydroxyapatite in stretched double network hydrogel. ACS Nano 2017, 11, 12103- 12110.

30

Chen, F.; Zhu, Y. J. Large-scale automated production of highly ordered ultralong hydroxyapatite nanowires and construction of various fire-resistant flexible ordered architectures. ACS Nano 2016, 10, 11483-11495.

31

Yang, R. L.; Zhu, Y. J.; Chen, F. F.; Qin, D. D.; Xiong, Z. C. Bioinspired macroscopic ribbon fibers with a nacre-mimetic architecture based on highly ordered alignment of ultralong hydroxyapatite nanowires. ACS Nano 2018, 12, 12284-12295.

32

Liu, Z. Q.; Meyers, M. A.; Zhang, Z. F.; Ritchie, R. O. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Prog. Mater. Sci. 2017, 88, 467-498.

33

Wingender, B.; Bradley, P.; Saxena, N.; Ruberti, J. W.; Gower, L. Biomimetic organization of collagen matrices to template bone-like microstructures. Matrix Biol. 2016, 52-54, 384-396.

34

Glimcher, M. J. Bone: Nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Rev. Mineral. Geochem. 2006, 64, 223-282.

35

Zhang, L. W.; Fu, L.; Zhang, X.; Chen, L. X.; Cai, Q.; Yang, X. P. Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomater. Sci. 2021, 9, 1547-1573.

36

Li, Z. Y.; Su, Y. L.; Xie, B. Q.; Wang, H. L.; Wen, T.; He, C. C.; Shen, H.; Wu, D. C.; Wang, D. J. A tough hydrogel-hydroxyapatite bone-like composite fabricated in situ by the electrophoresis approach. J. Mater. Chem. B 2013, 1, 1755-1764.

37

Zhang, L. J.; Rodriguez, J.; Raez, J.; Myles, A. J.; Fenniri, H.; Webster, T. J. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes. Nanotechnology 2009, 20, 175101.

38

Du, M. C.; Song, W. X.; Cui, Y.; Yang, Y.; Li, J. B. Fabrication and biological application of nano-hydroxyapatite (nHA)/alginate (ALG) hydrogel as scaffolds. J. Mater. Chem. 2011, 21, 2228-2236.

39

Hutchens, S. A.; Benson, R. S.; Evans, B. R.; Rawn, C. J.; O'Neill, H. A resorbable calcium-deficient hydroxyapatite hydrogel composite for osseous regeneration. Cellulose 2009, 16, 887-898.

40

Killion, J. A.; Geever, L. M.; Devine, D. M.; Higginbotham, C. L. Fabrication and in vitro biological evaluation of photopolymerisable hydroxyapatite hydrogel composites for bone regeneration. J. Biomater. Appl. 2014, 28, 1274-1283.

41

Izawa, H.; Nishino, S.; Maeda, H.; Morita, K.; Ifuku, S.; Morimoto, M.; Saimoto, H.; Kadokawa, J. I. Mineralization of hydroxyapatite upon a unique xanthan gum hydrogel by an alternate soaking process. Carbohydr. Polym. 2014, 102, 846-851.

42

Meng, D. Y.; Zhou, X. Q.; Zheng, K. Y.; Miao, C.; Sheng, Y.; Zou, H. F. In-situ synthesis and characterization of poly(vinyl alcohol)/ hydroxyapatite composite hydrogel by freezing-thawing method. Chem. Res. Chin. Univ. 2019, 35, 521-529.

43

Su, C.; Su, Y. L.; Li, Z. Y.; Haq, M. A.; Zhou, Y.; Wang, D. J. In situ synthesis of bilayered gradient poly(vinyl alcohol)/hydroxyapatite composite hydrogel by directional freezing-thawing and electrophoresis method. Mater. Sci. Eng. C 2017, 77, 76-83.

44

Huang, X.; Zuo, Y.; Li, J. D.; Li, Y. B. Study on crystallisation of nano-hydroxyapatite/polyvinyl alcohol composite hydrogel. Mater. Res. Innov. 2009, 13, 98-102.

45

Sun, G. X.; Li, Z. J.; Liang, R.; Weng, L. T.; Zhang, L. N. Super stretchable hydrogel achieved by non-aggregated spherulites with diameters < 5 nm. Nat. Commun. 2016, 7, 12095.

46

De Luca, F.; Clancy, A. J.; R. Carrero, N.; Anthony, D. B.; De Luca, H. G.; Shaffer, M. S. P.; Bismarck, A. Increasing carbon fiber composite strength with a nanostructured "brick-and-mortar" interphase. Mater. Horiz. 2018, 5, 668-674.

47

Gao, H. L.; Chen, S. M.; Mao, L. B.; Song, Z. Q.; Yao, H. B.; Cölfen, H.; Luo, X. S.; Zhang, F.; Pan, Z.; Meng, Y. F. et al. Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun. 2017, 8, 287.

48

Liu, D.; Gludovatz, B.; Barnard, H. S.; Kuball, M.; Ritchie, R. O. Damage tolerance of nuclear graphite at elevated temperatures. Nat. Commun. 2017, 8, 15942.

49

Evis, Z.; Webster, T. J. Nanosize hydroxyapatite: Doping with various ions. Adv. Appl. Ceram. 2011, 110, 311-321.

50

Jiang, Y.; Yuan, Z. Y.; Huang, J. Substituted hydroxyapatite: A recent development. Mater. Technol. 2020, 35, 785-796.

51

Zhang, Q. Q.; Zhu, Y. J.; Wu, J.; Shao, Y. T.; Cai, A. Y.; Dong, L. Y. Ultralong hydroxyapatite nanowire-based filter paper for high- performance water purification. ACS Appl. Mater. Interfaces 2019, 11, 4288-4301.

Nano Research
Pages 3643-3652
Cite this article:
Yu H-P, Zhu Y-J. Bioinspired flexible, high-strength, and versatile hydrogel with the fiberboard-and-mortar hierarchically ordered structure. Nano Research, 2021, 14(10): 3643-3652. https://doi.org/10.1007/s12274-021-3714-3
Topics:

803

Views

25

Crossref

25

Web of Science

25

Scopus

6

CSCD

Altmetrics

Received: 19 February 2021
Revised: 23 June 2021
Accepted: 24 June 2021
Published: 09 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return