Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

In-situ quantification of the surface roughness for facile fabrications of atomically smooth thin films

Genhao Liang1,2Long Cheng2()Junkun Zha1,2Hui Cao3Jingxian Zhang1,2Qixin Liu1,2Mingrui Bao2Jia Liu2Xiaofang Zhai1,2()
Hefei National Laboratory for Physical Science at Microscale, Department of Physics University of Science and Technology of ChinaHefei 230026 China
School of Physical Science and Technology ShanghaiTech UniversityPudong, Shanghai 201210 China
X-ray Science Division, Advanced Photon Source Argonne National LaboratoryLemont IL 60439 USA
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

This work presents an in-situ technique to quantify the layer-by-layer roughness of thin films and heterostructures by measuring the spectral profile of the reflection high-energy electron diffraction (RHEED). The characteristic features of the diffraction spot, including the vertical to lateral size ratio c/b and the asymmetrical ratio c1/c2 along the vertical direction, are found to be quantitatively dependent on the surface roughness. The quantitative relationships between them are established and discussed for different incident angles of high-energy electrons. As an example, the surface roughnesses of LaCoO3 films grown at different temperatures are obtained using such an in-situ technique, which are confirmed by the ex-situ atomic force microscopy. Moreover, the in-situ measured layer-by-layer roughness oscillations of two LaCoO3 films are demonstrated, revealing drastically different information from the intensity oscillations. The experiments assisted with the in-situ technique demonstrate an outstanding high resolution down to ~ 0.1 Å. Therefore, the new quantitative RHEED technique with real-time feedbacks significantly escalates the thin film synthesis efficiency, especially for achieving atomically smooth surfaces and interfaces. It opens up new prospects for future generations of thin film growth, such as the artificial intelligence-assisted thin film growth.

Electronic Supplementary Material

Download File(s)
12274_2021_3720_MOESM1_ESM.pdf (1.9 MB)

References

1

Xiang, X. D.; Sun, X. D.; Briceño, G.; Lou, Y. L.; Wang, K. A; Chang, H.; Wallace-Freedman, W. G.; Chen, S. W; Schultz, P. G. A combinatorial approach to materials discovery. Science 1995, 268, 1738–1740.

2

He, G.; Wei, Z. X.; Feng, Z. P.; Yu, X. D.; Zhu, B. Y.; Liu, L.; Jin, K.; Yuan, J.; Huan, Q. Combinatorial laser molecular beam epitaxy system integrated with specialized low-temperature scanning tunneling microscopy. Rev. Sci. Instrum. 2020, 91, 013904.

3

Meng, Z.; Yang, Q.; Yip, P. C.; Eyink, K. G.; Taferner, W. T.; Igelnik, B. Combined use of computational intelligence and materials data for on-line monitoring and control of MBE experiments. Eng. Appl. Artif. Intell. 1998, 11, 587–595.

4

Provence, S. R.; Thapa, S.; Paudel, R.; Truttmann, T. K.; Prakash, A.; Jalan, B.; Comes, R. B. Machine learning analysis of perovskite oxides grown by molecular beam epitaxy. Phys. Rev. Mater. 2020, 4, 083807.

5

Vasudevan, R. K.; Tselev, A.; Baddorf, A. P.; Kalinin, S. V. Big-data reflection high energy electron diffraction analysis for understanding epitaxial film growth processes. ACS Nano 2014, 8, 10899–10908.

6
Eason, R. Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials; John Wiley & Sons: New York, 2007; pp 1-682.https://doi.org/10.1002/0470052120
7

Martin, L. W.; Chu, Y. H.; Ramesh, R. Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R Rep. 2010, 68, 89–133.

8
Braun, W. Applied RHEED: Reflection High-Energy Electron Diffraction During Crystal Growth; Springer: Berlin, 1999.
9

Hwang, H. Y.; Iwasa, Y.; Kawasaki, M.; Keimer, B.; Nagaosa, N.; Tokura, Y. Emergent phenomena at oxide interfaces. Nat. Mater. 2012, 11, 103–113.

10

Ge, J. F.; Liu, Z. L.; Liu, C. H.; Gao, C. L.; Qian, D.; Xue, Q. K.; Liu, Y.; Jia, J. F. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat. Mater. 2015, 14, 285–289.

11

Lee, H.; Campbell, N.; Lee, J.; Asel, T. J.; Paudel, T. R.; Zhou, H.; Lee, J. W.; Noesges, B.; Seo, J.; Park, B. et al. Direct observation of a two-dimensional hole gas at oxide interfaces. Nat. Mater. 2018, 17, 231–236.

12

Fert, A. Nobel Lecture: Origin, development, and future of spintronics. Rev. Mod. Phys. 2008, 80, 1517.

13

Chambers, S. A.; Engelhard, M. H.; Shutthanandan, V.; Zhu, Z.; Droubay, T. C.; Qiao, L.; Sushko, P. V.; Feng, T.; Lee, H. D.; Gustafsson, T. et al. Instability, intermixing and electronic structure at the epitaxial LaAlO3/SrTiO3(001) heterojunction. Surf. Sci. Rep. 2010, 65, 317– 352.

14

Xie, Y. W.; Hikita, Y.; Bell, C.; Hwang, H. Y. Control of electronic conduction at an oxide heterointerface using surface polar adsorbates. Nat. Commun. 2011, 2, 494.

15

Dai, W. T.; Adhikari, S.; Garcia-Castro, A. C.; Romero, A. H.; Lee, H.; Lee, J. W.; Ryu, S.; Eom, C. B.; Cen, C. Tailoring LaAlO3/SrTiO3 interface metallicity by oxygen surface adsorbates. Nano Lett. 2016, 16, 2739–2743.

16

Benia, H. M.; Lin, C. T.; Kern, K.; Ast, C. R. Reactive chemical doping of the Bi2Se3 topological insulator. Phys. Rev. Lett. 2011, 107, 177602.

17

van den Broek, B.; Houssa, M.; Lu, A.; Pourtois, G.; Afanas'ev, V.; Stesmans, A. Silicene nanoribbons on transition metal dichalcogenide substrates: Effects on electronic structure and ballistic transport. Nano Res. 2016, 9, 3394–3406.

18

Sun, X. D.; Li, W. Y.; Wang, X.; Sui, Qi.; Zhang, T. Y.; Wang, Z.; Liu, L.; Li, D.; Feng, S.; Zhong, S. Y. et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res. 2020, 13, 3358–3363.

19

Sauvage-Simkin, M.; Pinchaux, R.; Massies, J.; Claverie, P.; Bonnet, J.; Jedrecy, N.; Robinson, I. K. Structure of in-situ grown GaAs(001) reconstructed surfaces by grazing incidence X-ray diffraction. Surf. Sci. 1989, 211212, 39–47.

20

Slobodskyy, T.; Schroth, P.; Grigoriev, D.; Minkevich, A. A.; Hu, D. Z.; Schaadt, D. M.; Baumbach, T. A portable molecular beam epitaxy system for in situ x-ray investigations at synchrotron beamlines. Rev. Sci. Instrum. 2012, 83, 105112.

21

McKee, R. A.; Walker, F. J.; Conner, J. R.; Specht, E. D. Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon. Appl. Phys. Lett. 1991, 59, 782–784.

22

Gruenewald, J. H.; Nichols, J.; Seo, S. S. A. Pulsed laser deposition with simultaneous in situ real-time monitoring of optical spectroscopic ellipsometry and reflection high-energy electron diffraction. Rev. Sci. Instrum. 2013, 84, 043902.

23

Lippmaa, M.; Nakagawa, N.; Kawasaki, M.; Ohashi, S.; Koinuma, H. Growth mode mapping of SrTiO3 epitaxy. Appl. Phys. Lett. 2000, 76, 2439–2441.

24

Sun, H. Y.; Mao, Z. W.; Zhang, T. W.; Han, L.; Zhang, T. T.; Cai, X. B.; Guo, X.; Li, Y. F.; Zang, Y. P.; Guo, W. et al. Chemically specific termination control of oxide interfaces via layer-by-layer mean inner potential engineering. Nat. Commun. 2018, 9, 2965.

25

Iakoubovskii, K.; Mitsuishi, K.; Nakayama, Y.; Furuya, K. Mean free path of inelastic electron scattering in elemental solids and oxides using transmission electron microscopy: Atomic number dependent oscillatory behavior. Phys. Rev. B 2008, 77, 104102.

26

Iakoubovskii, K.; Mitsuishi, K. Elastic scattering of 200 keV electrons in elemental solids: experimental observation of atomic-number- dependent oscillatory behavior. J. Phys. Condens. Matter. 2009, 21, 155402.

27

Mayol, R.; Salvat, F. Total and transport cross sections for elastic scattering of electrons by atoms. Atom. Data Nucl. Data Tables 1997, 65, 55–154.

28

Robinson, I. K.; Tweet, D. J. Surface X-ray diffraction. Rep. Prog. Phys. 1992, 55, 599–651.

29
Bhushan, B. Modern Tribology Handbook; CRC Press: Los Angeles, 2000.https://doi.org/10.1201/9780849377877
30

Lent, C. S.; Cohen, P. I. Diffraction from stepped surfaces: I. Reversible surfaces. Surf. Sci. 1984, 139, 121–154.

31

Korte, U., Maksym, P. A. Role of the step density in reflection high- energy electron diffraction: questioning the step density model. Phys. Rev. Lett. 1997, 78, 2381–2384.

32

Sullivan, M. C.; Ward, M. J.; Gutiérrez-Llorente, A.; Adler, E. R.; Joress, H.; Woll, A.; Brock, J. D. Complex oxide growth using simultaneous in situ reflection high-energy electron diffraction and x-ray reflectivity: When is one layer complete? Appl. Phys. Lett. 2015, 106, 031604.

Nano Research
Pages 1654-1659
Cite this article:
Liang G, Cheng L, Zha J, et al. In-situ quantification of the surface roughness for facile fabrications of atomically smooth thin films. Nano Research, 2022, 15(2): 1654-1659. https://doi.org/10.1007/s12274-021-3720-5
Topics:
Metrics & Citations  
Article History
Copyright
Return