Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article

One-step synthesis of N, P co-doped porous carbon electrocatalyst for highly efficient nitrogen fixation

Sijia Zhao1Jin Wang1Peng Wang1Shuang Wang1,2()Jinping Li2()
College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan 030024, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Heteroatom-doped porous carbon has attracted many researchers’ interests owing to their hierarchical porous and more active sites for nitrogen reduction reaction (NRR). However, the development of simple synthesis strategies to fabricate efficient catalyst is still remaining a challenge. In this work, a series of N, P co-doped porous carbon were prepared by one-step pyrolysis of zeolitic imidazolate framework (ZIF-8) and triphenylphosphine (TPP) under nitrogen atmosphere. The obtained catalyst by calcinating ZIF-8 and TPP with the mass ratio of 1: 5 for three hours was named as PN-C-ZIF-8, which exhibited a high yield rate of ammonia (43.39 μg·h–1·mg–1cat.) and Faraday efficiency (16.67%) in 0.05 M H2SO4 at –0.3 V. More importantly, the PN-C-ZIF-8 catalyst had superior selectivity that no hydrazine by-products were detected and long-term durability for 72 h. This study provides an idea for the convenient design and preparation of heteroatom doped carbon materials.

References

1

Chen, G. F.; Ren, S. Y.; Zhang, L. L.; Cheng, H.; Luo, Y. R.; Zhu, K. H.; Ding, L. X.; Wang, H. H. Advances in electrocatalytic N2 reduction—strategies to tackle the selectivity challenge. Small Methods 2019, 3, 1800337.

2

Chen, S. T.; Liu, D.; Peng, T. Y. Fundamentals and recent progress of photocatalytic nitrogen-fixation reaction over semiconductors. Solar. RRL. 2021, 5, 2000487.

3

Guo, X. X.; Du, H. T.; Qu, F. L.; Li, J. H. Recent progress in electrocatalytic nitrogen reduction. J. Mater. Chem. A. 2019, 7, 3531–3543.

4

Wan, Y. C.; Xu, J. C.; Lv, R. T. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 2019, 27, 69–90.

5

Li, C. C.; Wang, T.; Gong, J. L. Alternative strategies toward sustainable ammonia synthesis. Trans. Tianjin Univ. 2020, 26, 67–91.

6

Feng, J. X.; Pan, H. Electronic state optimization for electrochemical N2 reduction reaction in aqueous solution. J. Mater. Chem. A. 2020, 8, 13896–13915.

7

Wang, T.; Liu, Q.; Li, T. S.; Lu, S. Y.; Chen, G.; Shi, X. F.; Asiri, A. M.; Luo, Y. L.; Ma, D. W.; Sun, X. P. A magnetron sputtered Mo3Si thin film: An efficient electrocatalyst for N2 reduction under ambient conditions. J. Mater. Chem. A. 2021, 9, 884–888.

8

Liu, Z. F. New design strategy of high efficiency catalysis system for ammonia synthesis at room temperature and atmospheric pressure. Acta. Phys. -Chim. Sin. 2019, 35, 1171–1172.

9

Hou, J. B.; Yang, M.; Zhang, J. L. Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions. Nanoscale 2020, 12, 6900–6920.

10

Liu, Y.; Zhang, X. R.; Chen, Z. Y.; Zhang, X. Y.; Tsiakaras, P.; Shen, P. K. Electrocatalytic reduction of nitrogen on FeAg/Si for ammonia synthesis: A simple strategy for continuous regulation of faradaic efficiency by controlling H+ ions transfer rate. Appl. Catal. B: Environ. 2021, 283, 119606.

11

Wei, P. P.; Geng, Q.; Channa, A. I.; Tong, X.; Luo, Y. S.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Wang, Z. M.; Sun, X. P. Electrocatalytic N2 reduction to NH3 with high Faradaic efficiency enabled by vanadium phosphide nanoparticle on V foil. Nano Res. 2020, 13, 2967–2972.

12

Gao, L. F.; Cao, Y.; Wang, C.; Yu, X. W.; Li, W. B.; Zhou, Y.; Wang, B.; Yao, Y. F.; Wu, C. P.; Luo, W. J. et al. Domino effect: Gold electrocatalyzing lithium reduction to accelerate nitrogen fixation. Angew. Chem., Int. Ed. 2021, 60, 5257–5261.

13

Wang, T.; Li, S. X.; He, B. L.; Zhu, X. J.; Luo, Y. L.; Liu, Q.; Li, T. S.; Lu, S. Y.; Ye, C.; Asiri, A. M. et al. Commercial indium-tin oxide glass: A catalyst electrode for efficient N2 reduction at ambient conditions. Chin. J. Catal. 2021, 42, 1024–1029.

14

Pu, Z. H.; Liu, T. T.; Amiinu, I. S.; Cheng, R. L.; Wang, P. Y.; Zhang, C. T.; Ji, P. X.; Hu, W. H.; Liu, J.; Mu, S. C. Transition-metal phosphides: Activity origin, energy-related electrocatalysis applications, and synthetic strategies. Adv. Funct. Mater. 2020, 30, 2004009.

15

Chen, J. Y.; Wang, H. Y.; Wang, Z.; Mao, S. J.; Yu, J.; Wang, Y.; Wang, Y. Redispersion of Mo-based catalysts and the rational design of super small-sized metallic Mo species. ACS Catal. 2019, 9, 5302–5307.

16
Liu, Y. Q.; Huang, L.; Fang, Y. X.; Zhu, X. Y.; Dong, S. J. Achieving ultrahigh electrocatalytic NH3 yield rate on Fe-doped Bi2WO6 electrocatalyst. Nano Res., in press, DOI: 10.1007/s12274-020-3276-9.https://doi.org/10.1007/s12274-020-3276-9
17

Li, S. X.; Wang, Y. Y.; Liang, J.; Xu, T.; Ma, D. W.; Liu, Q.; Li, T. S.; Xu, S. R.; Chen, G.; Asiri, A. M. et al. TiB2 thin film enabled efficient NH3 electrosynthesis at ambient conditions. Mater. Today Phys. 2021, 18, 100396.

18

Chang, B.; Li, L. L.; Shi, D.; Jiang, H. H.; Ai, Z. Z.; Wang, S. Z.; Shao, Y. L.; Shen, J. X.; Wu, Y. Z.; Li, Y. L. et al. Metal-free boron carbonitride with tunable boron Lewis acid sites for enhanced nitrogen electroreduction to ammonia. Appl. Catal. B: Environ. 2021, 283, 119622.

19

Xu, T.; Ma, B. Y.; Liang, J.; Yue, L. C.; Liu, Q.; Li, T. S.; Zhao, H. T.; Luo, Y. L.; Lu, S. Y.; Sun, X. P. Recent progress in metal-free electrocatalysts toward Ambient N2 reduction reaction. Acta. Phys. -Chim. Sin. 2021, 37, 2009043.

20

Zhao, S. L.; Lu, X. Y.; Wang, L. Z.; Gale, J. L.; Amal, R. Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions. Adv. Mater. 2019, 31, 1805367.

21

Li, H. Y.; Wei, S. Q.; Wang, H. X.; Cai, Q. H.; Zhao, J. X. Enhanced catalytic activity of MXene for nitrogen electoreduction reaction by carbon doping. J. Colloid. Interf. Sci. 2021, 588, 1–8.

22
Zhang, W. Q.; Mao, K. K.; Low, J. X.; Liu, H. J.; Bo, Y. N.; Ma, J.; Liu, Q. X.; Jiang, Y. W.; Yang, J. Z.; Pan, Y. et al. Working-in-tandem mechanism of multi-dopants in enhancing electrocatalytic nitrogen reduction reaction performance of carbon-based materials. Nano Res., in press, DOI: 10.1007/s12274-021-3315-1.https://doi.org/10.1007/s12274-021-3315-1
23

Li, Q. L.; Chen, X. F.; Yang, Y. Biomass-derived nitrogen-doped porous carbon for highly efficient ambient electro-synthesis of NH3. Catalysts 2020, 10, 353.

24

Cui, C. N.; Zhang, H. C.; Luo, Z. X. Nitrogen reduction reaction on small iron clusters supported by N-doped graphene: A theoretical study of the atomically precise active-site mechanism. Nano Res. 2020, 13, 2280–2288.

25

Guan, B. Y.; Yu, L.; Lou, X. W. Formation of asymmetric bowl-like mesoporous particles via emulsion-induced interface anisotropic assembly. J. Am. Chem. Soc. 2016, 138, 11306–11311.

26

Wu, T. W.; Li, X. Y.; Zhu, X. J.; Mou, S. Y.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Zhang, Y. N.; Zheng, B. Z.; Zhao, H. T. et al. P-doped graphene toward enhanced electrocatalytic N2 reduction. Chem. Commun. 2020, 56, 1831–1834.

27

Yuan, L. P.; Wu, Z. Y.; Jiang, W. J.; Tang, T.; Niu, S.; Hu, J. S. Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia. Nano Res. 2020, 13, 1376–1382.

28

Wang, J.; Wang, S.; Li, J. P. S-Doped three-dimensional graphene (S-3DG): A metal-free electrocatalyst for the electrochemical synthesis of ammonia under ambient conditions. Dalton Trans. 2020, 49, 2258–2263.

29

Wang, J.; Wang, P.; Wang, S.; Li, J. P. A metal-free catalyst: Sulfur-doped and sulfur nanoparticle-modified CMK-3 as an electrocatalyst for enhanced N2-fixation. New J. Chem. 2020, 44, 20935–20939.

30

Wang, J.; Huang, H.; Wang, P.; Wang, S.; Li, J. P. N, S synergistic effect in hierarchical porous carbon for enhanced NRR performance. Carbon 2021, 179, 358–364.

31

Xiao, S. L.; Luo, F.; Hu, H.; Yang, Z. H. Boron and nitrogen dual-doped carbon nanospheres for efficient electrochemical reduction of N2 to NH3. Chem. Commun. 2020, 56, 446–449.

32

Feng, Z.; Tang, Y. N.; Chen, W. G.; Wei, D.; Ma, Y. Q.; Dai, X. Q. O-doped graphdiyne as metal-free catalysts for nitrogen reduction reaction. Mol. Catal. 2020, 483, 110705.

33

Liu, Q.; Xu, T.; Luo, Y. L.; Kong, Q. Q.; Li, T. S.; Lu, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Sun, X. P. Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr. Opin. Electrochem. 2021, 29, 100766.

34

Wang, B.; Liu, B. W.; Dai, L. M. Non-N-doped carbons as metal‐free electrocatalysts. Adv. Sustain. Syst. 2021, 5, 2000134.

35

Elayappan, V.; Shinde, P. A.; Veerasubramani, G. K.; Jun, S. C.; Noh, H. S.; Kim, K.; Kim, M.; Lee, H. Metal-organic-framework-derived hierarchical Co/CoP-decorated nanoporous carbon polyhedra for robust high-energy storage hybrid supercapacitors. Dalton Trans. 2020, 49, 1157–1166.

36

Ren, J. T.; Wan, C. Y.; Pei, T. Y.; Lv, X. W.; Yuan, Z. Y. Promotion of electrocatalytic nitrogen reduction reaction on N-doped porous carbon with secondary heteroatoms. Appl. Catal. B: Environ. 2020, 266, 118633.

37

Bi, H. H.; He, X. J.; Zhang, H. F.; Li, H. Q.; Xiao, N.; Qiu, J. S. N, P co-doped hierarchical porous carbon from rapeseed cake with enhanced supercapacitance. Renew. Energ. 2021, 170, 188–196.

38

Song, P. F.; Wang, H.; Kang, L.; Ran, B. C.; Song, H. H.; Wang, R. M. Electrochemical nitrogen reduction to ammonia at ambient conditions on nitrogen and phosphorus co-doped porous carbon. Chem. Commun. 2019, 55, 687–690.

39

Wen, J. F.; Chen, Y. J.; Ji, S. F.; Zhang, J.; Wang, D. S.; Li, Y. D. Metal-organic frameworks-derived nitrogen-doped carbon supported nanostructured PtNi catalyst for enhanced hydrosilylation of 1-octene. Nano Res. 2019, 12, 2584–2588.

40

Xiong, W.; Cheng, X.; Wang, T.; Luo, Y. S.; Feng, J.; Lu, S. Y.; Asiri, A. M.; Li, W.; Jiang, Z. J.; Sun, X. P. Co3(hexahydroxytriphenylene)2: A conductive metal-organic framework for ambient electrocatalytic N2 reduction to NH3. Nano Res. 2020, 13, 1008–1012.

41

Gu, J. L.; Sun, L.; Zhang, Y. X.; Zhang, Q. Y.; Li, X. W.; Si, H. C.; Shi, Y.; Sun, C.; Gong, Y.; Zhang, Y. H. MOF-derived Ni-doped CoP@C grown on CNTs for high-performance supercapacitors. Chem. Eng. J. 2020, 385, 123454.

42

Pan, B. B.; Zhu, X. R.; Wu, Y. L.; Liu, T. C.; Bi, X. X.; Feng, K.; Han, N.; Zhong, J.; Lu, J.; Li, Y. F. et al. Toward highly selective electrochemical CO2 reduction using metal-free heteroatom-doped carbon. Adv. Sci. 2020, 7, 2001002.

43

Song, P. F.; Kang, L.; Wang, H.; Guo, R.; Wang, R. M. Nitrogen (N), phosphorus (P)-codoped porous carbon as a metal-free electrocatalyst for N2 reduction under ambient conditions. ACS Appl. Mater. Interfaces 2019, 11, 12408–12414.

44

Wang, Y. H.; Li, Q.; Shi, W.; Cheng, P. The application of metal-organic frameworks in electrocatalytic nitrogen reduction. Chin. Chem. Lett. 2020, 31, 1768–1772.

45

Mukherjee, S.; Cullen, D. A.; Karakalos, S.; Liu, K. X.; Zhang, H.; Zhao, S.; Xu, H.; More, K. L.; Wang, G. F.; Wu, G. Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy. 2018, 48, 217–226.

46

Liu, Y. M.; Su, Y.; Quan, X.; Fan, X. F.; Chen, S.; Yu, H. T.; Zhao, H. M.; Zhang, Y. B.; Zhao, J. J. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal. 2018, 8, 1186–1191.

47

Zhang, P.; Sun, F.; Xiang, Z. H.; Shen, Z. G.; Yun, J.; Cao, D. P. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 442–450.

48

Wang, Y. H.; Liu, R. N.; Tian, Y. D.; Sun, Z.; Huang, Z. H.; Wu, X. L.; Li, B. Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors. Chem. Eng. J. 2020, 384, 123263.

49

Guan, B. Y., Zhang, S. L., Lou, X. W. Realization of walnut-shaped particles with macro-/mesoporous open channels through pore architecture manipulation and their use in electrocatalytic oxygen reduction. Angew. Chem., Int. Ed. 2018, 57, 6176–6180.

50

Chen, G. R.; Yan, Y. X.; Wang, J.; Ok, Y. S.; Zhong, G. Y.; Guan, B. Y.; Yamauchi, Y. General formation of macro-/mesoporous nanoshells from interfacial assembly of irregular mesostructured nanounits. Angew. Chem., Int. Ed. 2020, 59, 19663–19668.

Nano Research
Pages 1779-1785
Cite this article:
Zhao S, Wang J, Wang P, et al. One-step synthesis of N, P co-doped porous carbon electrocatalyst for highly efficient nitrogen fixation. Nano Research, 2022, 15(3): 1779-1785. https://doi.org/10.1007/s12274-021-3722-3
Topics:
Metrics & Citations  
Article History
Copyright
Return