Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article

Performance-enhanced and cost-effective triboelectric nanogenerator based on stretchable electrode for wearable SpO2 monitoring

Huamin Chen1,2Wei Yang1Cheng Zhang1Mingqiang Wu1Wenjie Li1Yuxiao Zou3Longfeng Lv3Hualiang Yu1Huizhen Ke7Ruping Liu5Yun Xu3,4Jun Wang1()Zhou Li2,6()
Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, Minjiang University, Fuzhou 350108, China
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, China
Beijing Institute of Graphic Communication, Beijing 102600, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Recently, stretchable and wearable health monitoring equipment has greatly improved human’s daily life, which sets higher demands for portable power source in stretchability, sustainability, and biocompatibility. In this work, we proposed a stretchable triboelectric nanogenerator (TENG) based on stretchable poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/porous carbon hybrid for oxyhemoglobin saturation (SpO2) monitoring. To combine advantages of carbon material for its high conductivity and organic electrode for its high stretchability, we spin-coated a solution of PEDOT:PSS/porous carbon onto a plasma-treated pre-stretched Ecoflex film to fabricate a stretchable electrode with rough surface. Due to its roughness and high potential difference with the dielectric material, the stretchable-electrode-based TENG exhibited better performance compared to the pristine TENG based on carbon or PEDOT:PSS material. The output voltage and current reached up to 51.5 V and 13.2 μA as the carbon concentration increased. More importantly, the performance further increased under large strain (100%) which is suitable for wearable systems. Finally, the device demonstrated its application potential for powering a flexible blood oxygen monitor. This simple and cost-effective method can enhance the stretchability and stability of organic/inorganic electrode-based TENG, which paves the development of high-performance stretchable TENG.

References

1

Chen, Y.; Zhang, Y. C.; Liang, Z. W.; Cao, Y.; Han, Z. Y.; Feng, X. Flexible inorganic bioelectronics. npj Flex. Electron. 2020, 4, 2.

2

Li, H. C.; Ma, Y. J.; Liang, Z. W.; Wang, Z. H.; Cao, Y.; Xu, Y.; Zhou, H.; Lu, B. W.; Chen, Y.; Han, Z. Y. et al. Wearable skin-like optoelectronic systems with suppression of motion artifacts for cuff-less continuous blood pressure monitor. Natl. Sci. Rev. 2020, 7, 849–862.

3

Kim, J.; Gutruf, P.; Chiarelli, A. M.; Heo, S. Y.; Cho, K.; Xie, Z. Q.; Banks, A.; Han, S.; Jang, K. I.; Lee, J. W. et al. Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv. Funct. Mater. 2017, 27, 1604373.

4

Kim, J.; Salvatore, G. A.; Araki, H.; Chiarelli, A. M.; Xie, Z. Q.; Banks, A.; Sheng, X.; Liu, Y. H.; Lee, J. W.; Jang, K. I. et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci. Adv. 2016, 2, e1600418.

5

Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Epidermal electronics. Science 2011, 333, 838–843.

6

Li, H. B.; Lv, S. Y.; Fang, Y. Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Res. 2020, 13, 1244–1252.

7

Wang, Z. L. On Maxwell's displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

8

Li, S. Y.; Nie, J. H.; Shi, Y. X.; Tao, X. L.; Wang, F.; Tian, J. W.; Lin, S. Q.; Chen, X. Y.; Wang, Z. L. Contributions of different functional groups to contact electrification of polymers. Adv. Mater. 2020, 32, 2001307.

9

Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

10

Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

11

Lim, K. W.; Peddigari, M.; Park, C. H.; Lee, H. Y.; Min, Y.; Kim, J. W.; Ahn, C. W.; Choi, J. J.; Hahn, B. D.; Choi, J. H. et al. A high output magneto-mechano-triboelectric generator enabled by accelerated water-soluble Nano-bullets for powering a wireless indoor positioning system. Energy Environ. Sci. 2019, 12, 666–674.

12

Xie, Y. N.; Wang, S. H.; Niu, S. M.; Lin, L.; Jing, Q. S.; Yang, J.; Wu, Z. Y.; Wang, Z. L. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 2014, 26, 6599–6607.

13

Zhao, P. F.; Bhattacharya, G.; Fishlock, S. J.; Guy, J. G. M.; Kumar, A.; Tsonos, C.; Yu, Z. D.; Raj, S.; McLaughlin, J. A.; Luo, J. K. et al. Replacing the metal electrodes in triboelectric nanogenerators: High-performance laser-induced graphene electrodes. Nano Energy 2020, 75, 104958.

14

Peng, F.; Liu, D.; Zhao, W.; Zheng, G. Q.; Ji, Y. X.; Dai, K.; Mi, L. W.; Zhang, D. B.; Liu, C. T.; Shen, C. Y. Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing. Nano Energy 2019, 65, 104068.

15

Zhong, Q. Z.; Zhong, J. W.; Hu, B.; Hu, Q. Y.; Zhou, J.; Wang, Z. L. A paper-based nanogenerator as a power source and active sensor. Energy Environ. Sci. 2013, 6, 1779–1784.

16

Xia, K. Q.; Xu, Z. W.; Zhu, Z. Y.; Zhang, H. Z.; Nie, Y. Cost-effective copper–nickel-based triboelectric nanogenerator for corrosion-resistant and high-output self-powered wearable electronic systems. Nanomaterials 2019, 9, 700.

17

Chen, H. M.; Bai, L.; Li, T.; Zhao, C.; Zhang, J. S.; Zhang, N.; Song, G. F.; Gan, Q. Q.; Xu, Y. Wearable and robust triboelectric nanogenerator based on crumpled gold films. Nano Energy 2018, 46, 73–80.

18

Chen, H. M.; Xu, Y.; Bai, L.; Jiang, Y.; Zhang, J. S.; Zhao, C.; Li, T.; Yu, H. L.; Song, G. F.; Zhang, N. et al. Crumpled graphene triboelectric nanogenerators: Smaller devices with higher output performance. Adv. Mater. Technol. 2017, 2, 1700044.

19

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

20

Seol, M.; Kim, S.; Cho, Y.; Byun, K. E.; Kim, H.; Kim, J.; Kim, S. K.; Kim, S. W.; Shin, H. J.; Park, S. Triboelectric series of 2D layered materials. Adv. Mater. 2018, 30, 1801210.

21

Chen, H. M.; Xu, Y.; Zhang, J. S.; Wu, W. T.; Song, G. F. Enhanced stretchable graphene-based triboelectric nanogenerator via control of surface nanostructure. Nano Energy 2019, 58, 304–311.

22

Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

23
Gao, Y. Y.; Liu, G. X.; Bu, T. Z.; Liu, Y. Y.; Qi, Y. C.; Xie, Y. T.; Xu, S. H.; Deng, W. L.; Yang, W. Q.; Zhang, C. MXene based mechanically and electrically enhanced film for triboelectric nanogenerator. Nano Res., in press, DOI: 10.1007/s12274-021-3437-5.
24

Chun, J.; Ye, B. U.; Lee, J. W.; Choi, D.; Kang, C. Y.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nat. Commun. 2016, 7, 12985.

25

Bai, Y.; Xu, L.; Lin, S. Q.; Luo, J. J.; Qin, H. F.; Han, K.; Wang, Z. L. Charge pumping strategy for rotation and sliding type triboelectric nanogenerators. Adv. Energy Mater. 2020, 10, 2000605.

26
Prada, T.; Harnchana, V.; Lakhonchai, A.; Chingsungnoen, A.; Poolcharuansin, P.; Chanlek, N.; Klamchuen, A.; Thongbai, P.; Amornkitbamrung, V. Enhancement of output power density in a modified polytetrafluoroethylene surface using a sequential O2/Ar plasma etching for triboelectric nanogenerator applications. Nano Res., in press, DOI: 10.1007/s12274-021-3470-4.
27

Yu, J. B.; Hou, X. J.; Cui, M.; Shi, S. Z.; He, J.; Sun, Y. W.; Wang, C.; Chou, X. J. Flexible PDMS-based triboelectric nanogenerator for instantaneous force sensing and human joint movement monitoring. Sci. China Mater. 2019, 62, 1423–1432.

28
Liu, L.; Shi, Q. F.; Lee, C. A hybridized electromagnetic-triboelectric nanogenerator designed for scavenging biomechanical energy in human balance control. Nano Res., in press, DOI: 10.1007/s12274-021-3540-7.
29

Xu, L.; Bu, T. Z.; Yang, X. D.; Zhang, C.; Wang, Z. L. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy 2018, 49, 625–633.

30

Wang, J.; Wu, C. S.; Dai, Y. J.; Zhao, Z. H.; Wang, A.; Zhang, T. J.; Wang, Z. L. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 2017, 8, 88.

31

Shen, J. L.; Li, Z. L.; Yu, J. Y.; Ding, B. Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 2017, 40, 282–288.

32

Yi, F.; Wang, X. F.; Niu, S. M.; Li, S. M.; Yin, Y. J.; Dai, K. R.; Zhang, G. J.; Lin, L.; Wen, Z.; Guo, H. Y. et al. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci. Adv. 2016, 2, e1501624.

33

Zhang, N.; Qin, C.; Feng, T. X.; Li, J.; Yang, Z. R.; Sun, X. P.; Liang, E. J.; Mao, Y. C.; Wang, X. D. Non-contact cylindrical rotating triboelectric nanogenerator for harvesting kinetic energy from hydraulics. Nano Res. 2020, 13, 1903–1907.

34

Pu, X.; Liu, M. M.; Chen, X. Y.; Sun, J. M.; Du, C. H.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 2017, 3, e1700015.

35

Guan, Q. B.; Lin, G. H.; Gong, Y. Z.; Wang, J. F.; Tan, W. Y.; Bao, D. Q.; Liu, Y. N.; You, Z. W.; Sun, X. H.; Wen, Z. et al. Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics. J. Mater. Chem. A 2019, 7, 13948–13955.

36

Yang, Y. Q.; Sun, N.; Wen, Z.; Cheng, P.; Zheng, H. C.; Shao, H. Y.; Xia, Y. J.; Chen, C.; Lan, H. W.; Xie, X. K. et al. Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 2018, 12, 2027–2034.

37

Wang, S.; Ding, L.; Fan, X. W.; Jiang, W. Q.; Gong, X. L. A liquid metal-based triboelectric nanogenerator as stretchable electronics for safeguarding and self-powered mechanosensing. Nano Energy 2018, 53, 863–870.

38

Fan, Y. J.; Meng, X. S.; Li, H. Y.; Kuang, S. Y.; Zhang, L.; Wu, Y.; Wang, Z. L.; Zhu, G. Stretchable porous carbon nanotube-elastomer hybrid nanocomposite for harvesting mechanical energy. Adv. Mater. 2017, 29, 1603115.

39

Matsunaga, M.; Hirotani, J.; Kishimoto, S.; Ohno, Y. High-output, transparent, stretchable triboelectric nanogenerator based on carbon nanotube thin film toward wearable energy harvesters. Nano Energy 2020, 67, 104297.

40

Hwang, B. U.; Lee, J. H.; Trung, T. Q.; Roh, E.; Kim, D. I.; Kim, S. W.; Lee, N. E. Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 2015, 9, 8801–8810.

41

Wen, Z.; Yang, Y. Q.; Sun, N.; Li, G. F.; Liu, Y. N.; Chen, C.; Shi, J. H.; Xie, L. J.; Jiang, H. X.; Bao, D. Q. et al. A wrinkled PEDOT: PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors. Adv. Funct. Mater. 2018, 28, 1803684.

42

Qin, Z.; Yin, Y. Y.; Zhang, W. Z.; Li, C. J.; Pan, K. Wearable and stretchable triboelectric nanogenerator based on crumpled nanofibrous membranes. ACS Appl. Mater. Interfaces 2019, 11, 12452–12459.

43

Yang, P. K.; Lin, L.; Yi, F.; Li, X. H.; Pradel, K. C.; Zi, Y. L.; Wu, C. I.; He, J. H.; Zhang, Y.; Wang, Z. L. A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring. Adv. Mater. 2015, 27, 3817–3824.

44

Kwak, S. S.; Kim, H.; Seung, W.; Kim, J.; Hinchet, R.; Kim, S. W. Fully stretchable textile triboelectric nanogenerator with knitted fabric structures. ACS Nano 2017, 11, 10733–10741.

45

Chen, C. Y.; Chen, L. J.; Wu, Z. Y.; Guo, H. Y.; Yu, W. D.; Du, Z. Q.; Wang, Z. L. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors. Mater. Today 2020, 32, 84–93.

46

Wei, Z. H.; Yan, K. Y.; Chen, H. N.; Yi, Y.; Zhang, T.; Long, X.; Li, J. K.; Zhang, L. X.; Wang, J. N.; Yang, S. H. Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy Environ. Sci. 2014, 7, 3326–3333.

47

Chen, H. M.; Xu, Y.; Zhang, J. S.; Wu, W. T.; Song, G. F. Theoretical system of contact-mode triboelectric nanogenerators for high energy conversion efficiency. Nanoscale Res. Lett. 2018, 13, 346.

48

Li, H. C.; Xu, Y.; Li, X. M.; Chen, Y.; Jiang, Y.; Zhang, C. X.; Lu, B. W.; Wang, J.; Ma, Y. J.; Chen, Y. H. et al. Epidermal Inorganic Optoelectronics for Blood Oxygen Measurement. Adv. Healthc. Mater. 2017, 6, 1601013.

Nano Research
Pages 2465-2471
Cite this article:
Chen H, Yang W, Zhang C, et al. Performance-enhanced and cost-effective triboelectric nanogenerator based on stretchable electrode for wearable SpO2 monitoring. Nano Research, 2022, 15(3): 2465-2471. https://doi.org/10.1007/s12274-021-3724-1
Topics:
Metrics & Citations  
Article History
Copyright
Return