AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Few-layered organic single-crystalline heterojunctions for high-performance phototransistors

Xinzi Tian1Jiarong Yao1Lijuan Zhang1Bin Han1Jianwei Shi3Jianwei Su4Jie Liu5Chunlei Li5Xinfeng Liu3( )Tianyou Zhai4Lang Jiang5Fangxu Yang1Xiaotao Zhang1Ye Zou5Rongjin Li1( )Wenping Hu1,2,5
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Show Author Information

Graphical Abstract

Abstract

Photogating and electrical gating are key physical mechanisms in organic phototransistors (OPTs). However, most OPTs are based on thick and polycrystalline films, which leads to substantially low efficiency of both photogating and electrical gating and thus reduced photoresponse. Herein, high-performance OPTs based on few-layered organic single-crystalline heterojunctions are proposed and the obstacle of thick and polycrystalline films for photodetection is overcome. Because of the molecular scale thickness of the type I organic single-crystalline heterojunctions in OPTs, both photogating and electrical gating are highly efficient. By synergy of efficient photogating and electrical gating, key figures of merit of OPTs reach the highest among those based on planar heterojunctions so far as we know. The production of few-layered organic single-crystalline heterojunctions will provide a new type of advanced materials for various applications.

References

1

Tang, Q.; Zhang, G. P.; Jiang, B. H.; Ji, D. Y.; Kong, H. H.; Riehemann, K.; Ji, Q. M.; Fuchs, H. Self-assembled fullerene (C60)-pentacene superstructures for photodetectors. SmartMat 2021, 2, 109–118.

2

Chow, P. C. Y.; Someya, T. Organic photodetectors for next-generation wearable electronics. Adv. Mater. 2020, 32, 1902045.

3

Yao, Y. F.; Chen, Y. S.; Wang, H. L.; Samorì, P. Organic photodetectors based on supramolecular nanostructures. SmartMat 2020, 1, e1009.

4

Yang, F. X.; Cheng, S. S.; Zhang, X. T.; Ren, X. C.; Li, R. J.; Dong, H. L.; Hu, W. P. 2D organic materials for optoelectronic applications. Adv. Mater. 2018, 30, 1702415.

5

He, X. W.; Léonard, F.; Kono, J. Uncooled carbon nanotube photodetectors. Adv. Opt. Mater. 2015, 3, 989–1011.

6

Kuribara, K.; Wang, H.; Uchiyama, N.; Fukuda, K.; Yokota, T.; Zschieschang, U.; Jaye, C.; Fischer, D.; Klauk, H.; Yamamoto, T. et al. Organic transistors with high thermal stability for medical applications. Nat. Commun. 2012, 3, 723.

7

Kufer, D.; Konstantatos, G. Photo-FETs: Phototransistors enabled by 2D and 0D nanomaterials. ACS Photonics 2016, 3, 2197–2210.

8

Wang, C.; Zhang, X. T.; Hu, W. P. Organic photodiodes and phototransistors toward infrared detection: Materials, devices, and applications. Chem. Soc. Rev. 2020, 49, 653–670.

9

Guo, J. H.; Jiang, S.; Pei, M. J.; Xiao, Y. L.; Zhang, B. W.; Wang, Q. J.; Zhu, Y.; Wang, H. Y.; Jie, J. S.; Wang, X. R. et al. Few-layer organic crystalline van der waals heterojunctions for ultrafast UV phototransistors. Adv. Electron. Mater. 2020, 6, 2000062.

10

Qian, C.; Sun, J.; Kong, L. A.; Gou, G. Y.; Zhu, M. L.; Yuan, Y. B.; Huang, H.; Gao, Y. L.; Yang, J. L. High-performance organic heterojunction phototransistors based on highly ordered copper phthalocyanine/para-sexiphenyl thin films. Adv. Funct. Mater. 2017, 27, 1604933.

11

Baeg, K. J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y. Y. Organic light detectors: Photodiodes and phototransistors. Adv. Mater. 2013, 25, 4267–4295.

12

Li, F.; Chen, Y.; Ma, C.; Buttner, U.; Leo, K.; Wu, T. High-performance near-infrared phototransistor based on n-type small-molecular organic semiconductor. Adv. Electron. Mater. 2017, 3, 1600430.

13

Mikhnenko, O. V.; Blom, P. W. M.; Nguyen, T. Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 2015, 8, 1867–1888.

14

Deibel, C.; Strobel, T.; Dyakonov, V. Role of the charge transfer state in organic donor–acceptor solar cells. Adv. Mater. 2010, 22, 4097–4111.

15

Brédas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: A molecular picture. Chem. Rev. 2004, 104, 4971–5004.

16

Scheidler, M.; Lemmer, U.; Kersting, R.; Karg, S.; Riess, W.; Cleve, B.; Mahrt, R. F.; Kurz, H.; Bässler, H.; Göbel, E. O. et al. Monte carlo study of picosecond exciton relaxation and dissociation in poly(phenylenevinylene). Phys. Rev. B 1996, 54, 5536–5544.

17

Wang, J.; Han, J. Y.; Chen, X. Q.; Wang, X. R. Design strategies for two-dimensional material photodetectors to enhance device performance. InfoMat 2019, 1, 33–53.

18

Cheng, R.; Li, D. H.; Zhou, H. L.; Wang, C.; Yin, A. X.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. F. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 2014, 14, 5590–5597.

19

Dong, H. L.; Zhu, H. F.; Meng, Q.; Gong, X.; Hu, W. P. Organic photoresponse materials and devices. Chem. Soc. Rev. 2012, 41, 1754–1808.

20

Peng, Y. Q.; Lv, W. L.; Yao, B.; Fan, G. Y.; Chen, D. Q.; Gao, P. J.; Zhou, M. Q.; Wang, Y. High performance near infrared photosensitive organic field-effect transistors realized by an organic hybrid planar-bulk heterojunction. Org. Electron. 2013, 14, 1045–1051.

21

Liang, Y. L.; Lv, W. L.; Luo, X.; He, L.; Xu, K.; Zhao, F. Y.; Huang, F. B.; Lu, F. P.; Peng, Y. Q. A comprehensive investigation of organic active layer structures toward high performance near-infrared phototransistors. Synth. Met. 2018, 240, 44–51.

22

Yao, J. R.; Zhang, Y.; Tian, X. Z.; Zhang, X. L.; Zhao, H. J.; Zhang, X. T.; Jie, J. S.; Wang, X. R.; Li, R. J.; Hu, W. P. Layer-defining strategy to grow two-dimensional molecular crystals on a liquid surface down to the monolayer limit. Angew. Chem., Int. Ed. 2019, 58, 16082–16086.

23

Wang, C.; Ren, X. C.; Xu, C. H.; Fu, B. B.; Wang, R. H.; Zhang, X. T.; Li, R. J.; Li, H. X.; Dong, H. L.; Zhen, Y. G. et al. N-type 2D organic single crystals for high-performance organic field-effect transistors and near-infrared phototransistors. Adv. Mater. 2018, 30, 1706260.

24

Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.

25

Wang, Q. J.; Qian, J.; Li, Y.; Zhang, Y. H.; He, D. W.; Jiang, S.; Wang, Y.; Wang, X. R.; Pan, L. J.; Wang, J. Z. et al. 2D single-crystalline molecular semiconductors with precise layer definition achieved by floating-coffee-ring-driven assembly. Adv. Funct. Mater. 2016, 26, 3191–3198.

26

Menke, S. M.; Holmes, R. J. Exciton diffusion in organic photovoltaic cells. Energy Environ. Sci. 2014, 7, 499–512.

27

Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718.

28

Wang, C.; Fu, B. B.; Zhang, X. T.; Li, R. J.; Dong, H. L.; Hu, W. P. Solution-processed, large-area, two-dimensional crystals of organic semiconductors for field-effect transistors and phototransistors. ACS Cent. Sci. 2020, 6, 636–652.

29

Wang, J. W.; Deng, W.; Wang, W.; Jia, R. F.; Xu, X. Z.; Xiao, Y. L.; Zhang, X. J.; Jie, J. S.; Zhang, X. H. External-force-driven solution epitaxy of large-area 2D organic single crystals for high-performance field-effect transistors. Nano Res. 2019, 12, 2796–2801.

30

Qian, J.; Jiang, S.; Li, S. L.; Wang, X. R.; Shi, Y.; Li, Y. Solution-processed 2D molecular crystals: Fabrication techniques, transistor applications, and physics. Adv. Mater. Technol. 2019, 4, 1800182.

31

Wang, Q. Q.; Yang, F. X.; Zhang, Y.; Chen, M. X.; Zhang, X. T.; Lei, S. B.; Li, R. J.; Hu, W. P. Space-confined strategy toward large-area two-dimensional single crystals of molecular materials. J. Am. Chem. Soc. 2018, 140, 5339–5342.

32

Zhang, Y. H.; Luo, Z. Z.; Hu, F. R.; Nan, H. Y.; Wang, X. Y.; Ni, Z. H.; Xu, J. B.; Shi, Y.; Wang, X. R. Realization of vertical and lateral van der waals heterojunctions using two-dimensional layered organic semiconductors. Nano Res. 2017, 10, 1336–1344.

33

Xu, C. H.; He, P.; Liu, J.; Cui, A. J.; Dong, H. L.; Zhen, Y. G.; Chen, W.; Hu, W. P. A general method for growing two-dimensional crystals of organic semiconductors by “solution epitaxy”. Angew. Chem., Int. Ed. 2016, 55, 9519–9523.

34

Jiang, L.; Dong, H. L.; Meng, Q.; Li, H. X.; He, M.; Wei, Z. M.; He, Y. D.; Hu, W. P. Millimeter-sized molecular monolayer two-dimensional crystals. Adv. Mater. 2011, 23, 2059–2063.

35

Wu, B.; Zhao, Y. H.; Nan, H. Y.; Yang, Z. Y.; Zhang, Y. H.; Zhao, H. J.; He, D. W.; Jiang, Z. L.; Liu, X. L.; Li, Y. et al. Precise, self-limited epitaxy of ultrathin organic semiconductors and heterojunctions tailored by van der Waals interactions. Nano Lett. 2016, 16, 3754–3759.

36

Peng, B. Y.; Huang, S. Y.; Zhou, Z. W.; Chan, P. K. L. Solution-processed monolayer organic crystals for high-performance field-effect transistors and ultrasensitive gas sensors. Adv. Funct. Mater. 2017, 27, 1700999.

37

Becerril, H. A.; Roberts, M. E.; Liu, Z. H.; Locklin, J.; Bao, Z. N. High-performance organic thin-film transistors through solution-sheared deposition of small-molecule organic semiconductors. Adv. Mater. 2008, 20, 2588–2594.

38

Zhang, Z. C.; Peng, B. Y.; Ji, X. D.; Pei, K.; Chan, P. K. L. Marangoni-effect-assisted bar-coating method for high-quality organic crystals with compressive and tensile strains. Adv. Funct. Mater. 2017, 27, 1703443.

39

Diao, Y.; Tee, B. C. K.; Giri, G.; Xu, J.; Kim, D. H.; Becerril, H. A.; Stoltenberg, R. M.; Lee, T. H.; Xue, G.; Mannsfeld, S. C. B. et al. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat. Mater. 2013, 12, 665–671.

40

Xue, G. B.; Fan, C. C.; Wu, J. K.; Liu, S.; Liu, Y. J.; Chen, H. Z.; Xin, H. L.; Li, H. Y. Ambipolar charge transport of TIPS-pentacene single-crystals grown from non-polar solvents. Mater. Horiz. 2015, 2, 344–349.

41

Wu, J. K.; Li, Q. F.; Xue, G. B.; Chen, H. Z.; Li, H. Y. Preparation of single-crystalline heterojunctions for organic electronics. Adv. Mater. 2017, 29, 1606101.

42

Zhao, X. M.; Liu, T. J.; Liu, H. L.; Wang, S. R.; Li, X. G.; Zhang, Y. T.; Hou, X. Y.; Liu, Z. L.; Shi, W. D.; Dennis, T. J. S. Organic single-crystalline p–n heterojunctions for high-performance ambipolar field-effect transistors and broadband photodetectors. ACS Appl. Mater. Interfaces 2018, 10, 42715–42722.

43

Anthony, J. E.; Brooks, J. S.; Eaton, D. L.; Parkin, S. R. Functionalized pentacene: Improved electronic properties from control of solid-state order. J. Am. Chem. Soc. 2001, 123, 9482–9483.

44

Yu, X. X.; Zheng, L.; Li, J. F.; Wang, L.; Han, J. L.; Chen, H. Y.; Zhang, X. T.; Hu, W. P. A new asymmetric anthracene derivative with high mobility. Sci. China Chem. 2019, 62, 251–255.

45

Liu, J.; Zhang, H. T.; Dong, H. L.; Meng, L. Q.; Jiang, L. F.; Jiang, L.; Wang, Y.; Yu, J. S.; Sun, Y. M.; Hu, W. P. et al. High mobility emissive organic semiconductor. Nat. Commun. 2015, 6, 10032.

46

Yang, T. F.; Wang, X.; Zheng, B. Y.; Qi, Z. Y.; Ma, C.; Fu, Y. H.; Fu, Y. P.; Hautzinger, M. P.; Jiang, Y.; Li, Z. W. et al. Ultrahigh-performance optoelectronics demonstrated in ultrathin perovskite-based vertical semiconductor heterostructures. ACS Nano 2019, 13, 7996–8003.

47

Zheng, W. H.; Zheng, B. Y.; Yan, C. L.; Liu, Y.; Sun, X. X.; Qi, Z. Y.; Yang, T. F.; Jiang, Y.; Huang, W.; Fan, P. et al. Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 2019, 6, 1802204.

48

Zhang, L. L.; Sharma, A.; Zhu, Y.; Zhang, Y. H.; Wang, B. W.; Dong, M. H.; Nguyen, H. T.; Wang, Z.; Wen, B.; Cao, Y. J. et al. Efficient and layer-dependent exciton pumping across atomically thin organic–inorganic type-I heterostructures. Adv. Mater. 2018, 30, 1803986.

49

Li, J.; Zhou, K.; Liu, J.; Zhen, Y. G.; Liu, L.; Zhang, J. D.; Dong, H. L.; Zhang, X. T.; Jiang, L.; Hu, W. P. Aromatic extension at 2, 6-positions of anthracene toward an elegant strategy for organic semiconductors with efficient charge transport and strong solid state emission. J. Am. Chem. Soc. 2017, 139, 17261–17264.

50

Singh, J.; Narayan, M.; Ompong, D.; Zhu, F. R. Dissociation of charge transfer excitons at the donor–acceptor interface in bulk heterojunction organic solar cells. J. Mater. Sci: Mater. Electron. 2017, 28, 7095–7099.

51

Gao, Y. H.; Yi, Y.; Wang, X. W.; Meng, H.; Lei, D. Y.; Yu, X. F.; Chu, P. K.; Li, J. A novel hybrid-layered organic phototransistor enables efficient intermolecular charge transfer and carrier transport for ultrasensitive photodetection. Adv. Mater. 2019, 31, 1900763.

52

Qi, Z. Y.; Yang, T. F.; Li, D.; Li, H. L.; Wang, X.; Zhang, X. H.; Li, F.; Zheng, W. H.; Fan, P.; Zhuang, X. J. et al. High-responsivity two-dimensional p-PbI2/n-WS2 vertical heterostructure photodetectors enhanced by photogating effect. Mater. Horiz. 2019, 6, 1474–1480.

Nano Research
Pages 2667-2673
Cite this article:
Tian X, Yao J, Zhang L, et al. Few-layered organic single-crystalline heterojunctions for high-performance phototransistors. Nano Research, 2022, 15(3): 2667-2673. https://doi.org/10.1007/s12274-021-3730-3
Topics:

821

Views

15

Crossref

14

Web of Science

13

Scopus

1

CSCD

Altmetrics

Received: 22 April 2021
Revised: 28 June 2021
Accepted: 03 July 2021
Published: 05 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return