Graphical Abstract

Photocatalytic production of hydrogen peroxide (H2O2) is an ideal pathway for obtaining solar fuels. Herein, an S-scheme heterojunction is constructed in hybrid TiO2/In2S3 photocatalyst, which greatly promotes the separation of photogenerated carriers to foster efficient H2O2 evolution. These composite photocatalysts show a high H2O2 yield of 376 μmol/(L·h). The mechanism of charge transfer and separation within the S-scheme heterojunction is well studied by computational methods and experiments. Density functional theory and in-situ irradiated X-ray photoelectron spectroscopy results reveal distinct features of the S-scheme heterojunction in the TiO2/In2S3 hybrids and demonstrate charge transfer mechanisms. The density functional theory calculation and electron paramagnetic resonance results suggest that O2 reduction to H2O2 follows stepwise one-electron processes. In2S3 shows a much stronger interaction with O2 than TiO2 as well as a higher reduction ability, serving as the active sites for H2O2 generation. The work provides a novel design of S-scheme photocatalyst with high H2O2 evolution efficiency and mechanistically demonstrates the improved separation of charge carriers.
Lin, Y. J.; Khan, I.; Saha, S.; Wu, C. C.; Barman, S. R.; Kao, F. C.; Lin, Z. H. Thermocatalytic hydrogen peroxide generation and environmental disinfection by Bi2Te3 nanoplates. Nat. Commun. 2021, 12, 180.
Hou, W. S.; Li, Y. X.; Ouyang, S. X.; Chen, H. Y.; Ye, J. H.; Han, X. P.; Deng, Y. D. Bifunctional hydroxyl group over polymeric carbon nitride to achieve photocatalytic H2O2 production in ethanol aqueous solution with an apparent quantum yield of 52.8% at 420 nm. Chem. Commun. 2019, 55, 13279–13282.
Chen, G. Y.; Liu, J. W.; Li, Q. Q.; Guan, P. F.; Yu, X. F.; Xing, L. S.; Zhang, J.; Che, R. C. A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Res. 2019, 12, 2614–2622.
Zhang, D. D.; Xu, G. Q.; Chen, T.; Chen, F. Photocatalytically green synthesis of H2O2 using 2-ethyl-9,10-anthraquinone as an electron condenser. RSC Adv. 2014, 4, 52199–52202.
Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.
Dittmeyer, R.; Grunwaldt, J. D.; Pashkova, A. A review of catalyst performance and novel reaction engineering concepts in direct synthesis of hydrogen peroxide. Catal. Today 2015, 248, 149–159.
Wilson, N. M.; Flaherty, D. W. Mechanism for the direct synthesis of H2O2 on Pd clusters: Heterolytic reaction pathways at the liquid-solid interface. J. Am. Chem. Soc. 2016, 138, 574–586.
Liu, Q. R.; Zhou, L.; Liu, L. H.; Li, J. Q.; Wang, S. B.; Znad, H.; Liu, S. M. Magnetic ZnO@Fe3O4 composite for self-generated H2O2 toward photo-Fenton-like oxidation of nitrophenol. Compos. Part B: Eng. 2020, 200, 108345.
Liu, Y. S.; Han, J.; Qiu, W.; Gao, W. Hydrogen peroxide generation and photocatalytic degradation of estrone by microstructural controlled ZnO nanorod arrays. Appl. Surf. Sci. 2012, 263, 389–396.
Moon, G. H.; Kim, W.; Bokare, A. D.; Sung, N. E.; Choi, W. Solar production of H2O2 on reduced graphene oxide–TiO2 hybrid photocatalysts consisting of earth-abundant elements only. Energy Environ. Sci. 2014, 7, 4023–4028.
Fuku, K.; Takioka, R.; Iwamura, K.; Todoroki, M.; Sayama, K.; Ikenaga, N. Photocatalytic H2O2 production from O2 under visible light irradiation over phosphate ion-coated Pd nanoparticles-supported BiVO4. Appl. Catal. B: Environ. 2020, 272, 119003.
Hirakawa, H.; Shiota, S.; Shiraishi, Y.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Au nanoparticles supported on BiVO4: Effective inorganic photocatalysts for H2O2 production from water and O2 under visible light. ACS Catal. 2016, 6, 4976–4982.
Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 2014, 4, 774–780.
Fu, Y. J.; Liu, C. A.; Zhang, M. L.; Zhu, C.; Li, H.; Wang, H. B.; Song, Y. X.; Huang, H.; Liu, Y.; Kang, Z. H. Photocatalytic H2O2 and H2 generation from living chlorella vulgaris and carbon micro particle comodified g-C3N4. Adv. Energy Mater. 2018, 8, 1802525.
Burek, B. O.; Bahnemann, D. W.; Bloh, J. Z. Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide. ACS Catal. 2019, 9, 25–37.
Wang, J.; Wang, G. H.; Cheng, B.; Yu, J. G.; Fan, J. J. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin. J. Catal. 2021, 42, 56–68.
Lee, T.; Bui, H. T.; Yoo, J.; Ra, M.; Han, S. H.; Kim, W.; Kwon, W. Formation of TiO2@carbon core/shell nanocomposites from a single molecular layer of aromatic compounds for photocatalytic hydrogen peroxide generation. ACS Appl. Mater. Interfaces 2019, 11, 41196–41203.
Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.
Wang, L.; Jin, P. X.; Duan, S. H.; She, H. D.; Huang, J. W.; Wang, Q. Z. In-situ incorporation of copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction. Sci. Bull. 2019, 64, 926–933.
Li, X. Z.; Chen, C. C.; Zhao, J. C. Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir 2001, 17, 4118–4122.
Zhang, J. Z.; Zheng, L. H.; Wang, F.; Chen, C.; Wu, H. D.; Leghari, S. A. K.; Long, M. The critical role of furfural alcohol in photocatalytic H2O2 production on TiO2. Appl. Catal. B: Environ. 2020, 269, 118770.
Zheng, L. H.; Su, H. R.; Zhang, J. Z.; Walekar, L. S.; Molamahmood, H. V.; Zhou, B. X.; Long, M.; Hu, Y. H. Highly selective photocatalytic production of H2O2 on sulfur and nitrogen co-doped graphene quantum dots tuned TiO2. Appl. Catal. B: Environ. 2018, 239, 475–484.
Maurino, V.; Minero, C.; Mariella, G.; Pelizzetti, E. Sustained production of H2O2 on irradiated TiO2-fluoride systems. Chem. Commun. 2005, 2627–2629.
Tsukamoto, D.; Shiro, A.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with Au–Ag bimetallic alloy nanoparticles. ACS Catal. 2012, 2, 599–603.
Teranishi, M.; Hoshino, R.; Naya, S. I.; Tada, H. Gold-nanoparticle-loaded carbonate-modified titanium (IV) oxide surface: Visible-light-driven formation of hydrogen peroxide from oxygen. Angew. Chem., Int. Ed. 2016, 55, 12773–12777.
Tada, H. Overall water splitting and hydrogen peroxide synthesis by gold nanoparticle-based plasmonic photocatalysts. Nanoscale Adv. 2019, 1, 4238–4245.
Zuo, G. F.; Li, B. D.; Guo, Z. L.; Wang, L.; Yang, F.; Hou, W. S.; Zhang, S. T.; Zong, P. X.; Liu, S. S.; Meng, X. G. et al. Efficient photocatalytic hydrogen peroxide production over TiO2 passivated by SnO2. Catalysts 2019, 9, 623.
Wang, R.; Shi, M. S.; Xu, F. Y.; Qiu, Y.; Zhang, P.; Shen, K. L.; Zhao, Q.; Yu, J. G.; Zhang, Y. F. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection. Nat. Commun. 2020, 11, 4465.
Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.
He, F.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Ho, W.; Macyk, W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B: Environ. 2020, 272, 119006.
Wang, Z. L.; Chen, Y. F.; Zhang, L. Y.; Cheng, B.; Yu, J. G.; Fan, J. J. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity. J. Mater. Sci. Technol. 2020, 56, 143–150.
Liu, C. B.; Meng, D. S.; Li, Y.; Wang, L. L.; Liu, Y. T.; Luo, S. L. Hierarchical architectures of ZnS–In2S3 solid solution onto TiO2 nanofibers with high visible-light photocatalytic activity. J. Alloys Compd. 2015, 624, 44–52.
Tiwari, J. N.; Singh, A. N.; Sultan, S.; Kim, K. S. Recent advancement of p- and d-block elements, single atoms, and graphene-based photoelectrochemical electrodes for water splitting. Adv. Energy Mater. 2020, 10, 2000280.
He, R. A.; Liu, H. J.; Liu, H. M.; Xu, D. F.; Zhang, L. Y. S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance. J. Mater. Sci. Technol. 2020, 52, 145–151.
He, F.; Meng, A. Y.; Cheng, B.; Ho, W.; Yu, J. G. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin. J. Catal. 2020, 41, 9–20.
Han, M. M.; Yu, L. M.; Chen, W. Y.; Wang, W. Z.; Jia, J. H. Fabrication and photoelectrochemical characteristics of In2S3 nano-flower films on TiO2 nanorods arrays. Appl. Surf. Sci. 2016, 369, 108–114.
Zuo, Y.; Chen, J. J.; Yang, H. C.; Zhang, M.; Wang, Y. F.; He, G.; Sun, Z. Q. Facile synthesis of TiO2/In2S3/CdS ternary porous heterostructure arrays with enhanced photoelectrochemical and visible-light photocatalytic properties. J. Mater. Chem. C 2019, 7, 9065–9074.
Ma, Y. S.; Wang, Y.; Jiang, T. Y.; Zhang, F. X.; Li, X. M.; Zhu, Y. Y. Hydrothermal synthesis of novel 1-aminoperylene diimide/TiO2/MoS2 composite with enhanced photocatalytic activity. Sci. Rep. 2020, 10, 22005.
Wu, R.; Xu, Y.; Xu, R.; Huang, Y.; Zhang, B. Ultrathin-nanosheet-based 3D hierarchical porous In2S3 microspheres: Chemical transformation synthesis, characterization, and enhanced photocatalytic and photoelectrochemical property. J. Mater. Chem. A 2015, 3, 1930–1934.
Yang, Y.; Tan, H. Y.; Cheng, B.; Fan, J. J.; Yu, J. G.; Ho, W. Near-infrared-responsive photocatalysts. Small Methods 2021, 5, 2001042.
Chai, B.; Peng, T. Y.; Zeng, P.; Mao, J. Synthesis of floriated In2S3 decorated with TiO2 nanoparticles for efficient photocatalytic hydrogen production under visible light. J. Mater. Chem. 2011, 21, 14587–14593.
Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.
Wageh, S.; Al-Ghamdi, A. A.; Liu, L. J. S-scheme heterojunction photocatalyst for CO2 photoreduction. Acta Phys. Chim. Sin. 2021, 37, 2010024.
Fei, X. G.; Tan, H. Y.; Cheng, B.; Zhu, B. C.; Zhang, L. Y. 2D/2D black phosphorus/g-C3N4 S-scheme heterojunction photocatalysts for CO2 reduction investigated using DFT calculations. Acta Phys. Chim. Sin. 2021, 37, 2010027.
Liu, L. Z.; Hu, T. P.; Dai, K.; Zhang, J. F.; Liang, C. H. A novel step-scheme BiVO4/Ag3VO4 photocatalyst for enhanced photocatalytic degradation activity under visible light irradiation. Chin. J. Catal. 2021, 42, 46–55.
Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem., Int. Ed. 2020, 59, 5218–5225.
Mei, F. F.; Li, Z.; Dai, K.; Zhang, J. F.; Liang, C. H. Step-scheme porous g-C3N4/Zn0.2Cd0.8S-DETA composites for efficient and stable photocatalytic H2 production. Chin. J. Catal. 2020, 41, 41–49.
Wei, J. X.; Chen, Y. W.; Zhang, H. Y.; Zhuang, Z. Y.; Yu, Y. Hierarchically porous S-scheme CdS/UiO-66 photocatalyst for efficient 4-nitroaniline reduction. Chin. J. Catal. 2021, 42, 78–86.
Xie, Q.; He, W. M.; Liu, S. W.; Li, C. H.; Zhang, J. F.; Wong, P. K. Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling. Chin. J. Catal. 2020, 41, 140–153.
Chou, J. C.; Liao, L. P. Study on pH at the point of zero charge of TiO2 pH ion-sensitive field effect transistor made by the sputtering method. Thin Solid Films 2005, 476, 157–161.
Gao, C.; Li, J. T.; Shan, Z. C.; Huang, F. Q.; Shen, H. L. Preparation and visible-light photocatalytic activity of In2S3/TiO2 composite. Mater. Chem. Phys. 2010, 122, 183–187.
Štengl, V.; Opluštil, F.; Němec, T. In3+-doped TiO2 and TiO2/In2S3 nanocomposite for photocatalytic and stoichiometric degradations. Photochem. Photobiol. 2012, 88, 265–276.
Sun, Z. J.; Lv, B. H.; Li, J. S.; Xiao, M.; Wang, X. Y.; Du, P. W. Core–shell amorphous cobalt phosphide/cadmium sulfide semiconductor nanorods for exceptional photocatalytic hydrogen production under visible light. J. Mater. Chem. A 2016, 4, 1598–1602.
Liu, Y.; Hao, X. Q.; Hu, H. Q.; Jin, Z. L. High efficiency electron transfer realized over NiS2/MoSe2 S-scheme heterojunction in photocatalytic hydrogen evolution. Acta Phys. Chim. Sin. 2021, 37, 2008030.
Feng, C. Y.; Tang, L.; Deng, Y. C.; Wang, J. J.; Luo, J.; Liu, Y. N.; Ouyang, X. L.; Yang, H. R.; Yu, J. F.; Wang, J. J. Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution. Adv. Funct. Mater. 2020, 30, 2001922.
Ge, H. N.; Xu, F. Y.; Cheng, B.; Yu, J. G.; Ho, W. S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2-production photocatalyst. ChemCatChem 2019, 11, 6301–6309.
Butler, M. A.; Ginley, D. S. Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. J. Electrochem. Soc. 1978, 125, 228–232.
Gao, R. R.; Cheng, B.; Fan, J. J.; Yu, J. G.; Ho, W. ZnxCd1–xS quantum dot with enhanced photocatalytic H2-production performance. Chin. J. Catal. 2021, 42, 15–24.
Li, Z. F.; Wu, Z. H.; He, R. A.; Wan, L.; Zhang, S. Y. In2O3−x(OH)y/Bi2MoO6 S-scheme heterojunction for enhanced photocatalytic performance. J. Mater. Sci. Technol. 2020, 56, 151–161.
Xu, F. Y.; Tan, H. Y.; Fan, J. J.; Cheng, B.; Yu, J. G.; Xu, J. S. Electrospun TiO2-based photocatalysts. Sol. RRL 2021, 5, 2000571.
Qin, D. R.; Xia, Y.; Li, Q.; Yang, C.; Qin, Y. M.; Lv, K. L. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure. J. Mater. Sci. Technol. 2020, 56, 206–215.
Carp, O.; Huisman, C. L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177.
Xia, Y.; Zhang, L. Y.; Hu, B. W.; Yu, J. G.; Al-Ghamdi, A. A.; Wageh, S. Design of highly-active photocatalytic materials for solar fuel production. Chem. Eng. J. 2020, 421, 127732.
Deng, H. Z.; Fei, X. G.; Yang, Y.; Fan, J.; Yu, J. G.; Cheng, B.; Zhang, L. Y. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem. Eng. J. 2021, 409, 127377.
Zhao, X. S.; You, Y. Y.; Huang, S. B.; Wu, Y. X.; Ma, Y. Y.; Zhang, G.; Zhang, Z. H. Z-scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4 heterostructure under visible light. Appl. Catal. B: Environ. 2020, 278, 119251.