AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flexible atomic buckling and homogeneous edge states in few-layer Bi(110) films

Yanfeng Lyu1( )Samira Daneshmandi1Shuyuan Huyan1Chingwu Chu1,2( )
Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, USA
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Show Author Information

Graphical Abstract

Abstract

The structure and edge states of two-dimensional few-layer Bi(110) films grown on a graphene/SiC substrate were studied by low-temperature scanning tunneling microscopy and spectroscopy. We found that the local density of states of few-layer Bi(110) films are layer-dependent and that the films transition from exhibiting semiconducting characteristics to metallic ones as the number of layers increases. The in-plane lattice structure has numerous displacements and inversions, which implies that the atomic arrangement and atomic buckling in ultrathin Bi(110) films are flexible. The edges formed between 4-monolayer Bi(110) and graphene are reconstructed and distorted, and the corresponding edge states are topographically dependent. Steps from the substrate and domain boundaries also modify the electronic structures and induce additional defect-dependent states. We also found that the zigzag-shaped step edges in few-layer Bi(110) films are nonreconstructed and possess layer-dependent homogeneous edge states, providing a very likely platform for further research on quantum interference of the edge mode in order to confirm the topology in Bi(110).

References

1

Schindler, F.; Wang, Z. J.; Vergniory, M. G.; Cook, A. M.; Murani, A.; Sengupta, S.; Kasumov, A. Y.; Deblock, R.; Jeon, S.; Drozdov, I. et al. Higher-order topology in bismuth. Nat. Phys. 2018, 14, 918–924.

2

Jin, K. H.; Yeom, H. W.; Liu, F. Doping-induced topological phase transition in Bi: The role of quantum electronic stress. Phys. Rev. B 2020, 101, 035111.

3

Lu, Y. H.; Xu, W. T.; Zeng, M. G.; Yao, G. G.; Shen, L.; Yang, M.; Luo, Z. Y.; Pan, F.; Wu, K.; Das, T. et al. Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110). Nano Lett. 2015, 15, 80–87.

4

Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.

5

Kane, C. L.; Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 2005, 95, 146802.

6

Bernevig, B. A.; Zhang, S. C. Quantum spin Hall effect. Phys. Rev. Lett. 2006, 96, 106802.

7

Murakami, S. Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. Phys. Rev. Lett. 2006, 97, 236805.

8

Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.

9

Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.

10

Nagao, T.; Sadowski, J. T.; Saito, M.; Yaginuma, S.; Fujikawa, Y.; Kogure, T.; Ohno, T.; Hasegawa, Y.; Hasegawa, S.; Sakurai, T. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)−7×7. Phys. Rev. Lett. 2004, 93, 105501.

11

Yaginuma, S.; Nagao, T.; Sadowski, J. T.; Saito, M.; Nagaoka, K.; Fujikawa, Y.; Sakurai, T.; Nakayama, T. Origin of flat morphology and high crystallinity of ultrathin bismuth films. Surf. Sci. 2007, 601, 3593–3600.

12

Bian, G.; Miller, T.; Chiang, T. C. Electronic structure and surface-mediated metastability of Bi films on Si(111)−7×7 studied by angle-resolved photoemission spectroscopy. Phys. Rev. B 2009, 80, 245407.

13

Kokubo, I.; Yoshiike, Y.; Nakatsuji, K.; Hirayama, H. Ultrathin Bi(110) films on Si(111)√3×√3-B substrates. Phys. Rev. B 2015, 91, 075429.

14

Nagase, K.; Kokubo, I.; Yamazaki, S.; Nakatsuji, K.; Hirayama, H. Structure and growth of Bi(110) islands on Si(111)√3×√3-B substrates. Phys. Rev. B 2018, 97, 195418.

15

Sun, J. T.; Huang, H.; Wong, S. L.; Gao, H. J.; Feng, Y. P.; Wee, A. T. S. Energy-gap opening in a Bi(110) nanoribbon induced by edge reconstruction. Phys. Rev. Lett. 2012, 109, 246804.

16

Hu, T. W.; Hui, X.; Zhang, X. H.; Liu, X. T.; Ma, D. Y.; Wei, R.; Xu, K. W.; Ma, F. Nanostructured Bi grown on epitaxial graphene/SiC. J. Phys. Chem. Lett. 2018, 9, 5679–5684.

17

Kowalczyk, P. J.; Mahapatra, O.; Brown, S. A.; Bian, G.; Wang, X.; Chiang, T. C. Electronic size effects in three-dimensional nanostructures. Nano Lett. 2013, 13, 43–47.

18

Bian, G.; Wang, X.; Miller, T.; Chiang, T. C.; Kowalczyk, P. J.; Mahapatra, O.; Brown, S. A. First-principles and spectroscopic studies of Bi(110) films: Thickness-dependent Dirac modes and property oscillations. Phys. Rev. B 2014, 90, 195409.

19

Kowalczyk, P. J.; Mahapatra, O.; Brown, S. A.; Bian, G.; Chiang, T. C. STM driven modification of bismuth nanostructures. Surf. Sci. 2014, 621, 140–145.

20

Kowalczyk, P. J.; Mahapatra, O.; Belić, D.; Brown, S. A.; Bian, G.; Chiang, T. C. Origin of the moiré pattern in thin Bi films deposited on HOPG. Phys. Rev. B 2015, 91, 045434.

21

Kowalczyk, P. J.; Brown, S. A.; Maerkl, T.; Lu, Q. S.; Chiu, C. K.; Liu, Y.; Yang, S. A.; Wang, X. X.; Zasada, I.; Genuzio, F. et al. Realization of symmetry-enforced two-dimensional Dirac fermions in nonsymmorphic α-bismuthene. ACS Nano 2020, 14, 1888–1894.

22

Ju, S. L.; Wu, M. K.; Yang, H.; Wang, N. Z.; Zhang, Y. Y.; Wu, P.; Wang, P. D.; Zhang, B.; Mu, K. J.; Li, Y. Y. et al. Band structures of ultrathin Bi(110) films on black phosphorus substrates using angle-resolved photoemission spectroscopy. Chin. Phys. Lett. 2018, 35, 077102.

23

Wang, M. X.; Li, P.; Xu, J. P.; Liu, Z. L.; Ge, J. F.; Wang, G. Y.; Yang, X. J.; Xu, Z. A.; Ji, S. H.; Gao, C. L. et al. Interface structure of a topological insulator/superconductor heterostructure. New J. Phys. 2014, 16, 123043.

24

Peng, L.; Qiao, J. S.; Xian, J. J.; Pan, Y. H.; Ji, W.; Zhang, W. H.; Fu, Y. S. Unusual electronic states and superconducting proximity effect of Bi films modulated by a NbSe2 substrate. ACS Nano 2019, 13, 1885–1892.

25

Dong, X.; Li, Y. K.; Li, J.; Peng, X. L.; Qiao, L.; Chen, D. Y.; Yang, H. X.; Xiong, X. L.; Wang, Q. S.; Li, X. et al. Epitaxial growth and structural properties of Bi (110) thin films on TiSe2 substrates. J. Phys. Chem. C 2019, 123, 13637–13641.

26

Hatta, S.; Ohtsubo, Y.; Miyamoto, S.; Okuyama, H.; Aruga, T. Epitaxial growth of Bi thin films on Ge(111). Appl. Surf. Sci. 2009, 256, 1252–1256.

27

Lyu, Y.; Daneshmandi, S.; Huyan, S.; Chu, C. W. In-gap states induced by distortion in α-bismuthene. Mater. Today Phys. 2021, 18, 100380.

28

Lyu, Y. F.; Yuan, H. M.; Daneshmandi, S.; Huyan, S. Y; Chu, C. W. Atomic structure and electronic properties of intermetallic CaBi2 thin films. J. Phys. Chem. Lett. 2020, 11, 4385–4391.

29

Daneshmandi, S.; Lyu, Y. F.; Salavati-fard, T.; Yuan, H. M., Adnani, M.; Grabow, L. C.; Chu, C. W. Atomic properties of monoclinic Ag2Se thin film grown on SrTiO3 substrate by molecular beam epitaxy. J. Phys. Chem. Lett. 2021, 12, 4140–4147.

30

Kowalczyk, P. J.; Mahapatra, O.; Ster, M. L.; Brown, S. A.; Bian, G.; Wang, X.; Chiang, T. C. Single atomic layer allotrope of bismuth with rectangular symmetry. Phys. Rev. B 2017, 96, 205434.

31

Shi, Z. Q.; Li, H. P.; Yuan, Q. Q.; Song, Y. H.; Lv, Y. Y.; Shi, W.; Jia, Z. Y.; Gao, L. B.; Chen, Y. B.; Zhu, W. G. et al. Van der Waals heteroepitaxial growth of monolayer Sb in a puckered honeycomb structure. Adv. Mater. 2019, 31, 1806130.

32

Shi, Z. Q.; Li, H. P.; Xue, C. L.; Yuan, Q. Q.; Lv, Y. Y.; Xu, Y. J.; Jia, Z. Y.; Gao, L. B.; Chen, Y. B.; Zhu, W. G. et al. Tuning the electronic structure of an α-antimonene monolayer through interface engineering. Nano Lett. 2020, 20, 8408–8414.

33

Li, Z.; Nadeem, M.; Yue, Z. J.; Cortie, D.; Fuhrer, M.; Wang, X. L. Possible excitonic insulating phase in quantum-confined Sb nanoflakes. Nano Lett. 2019, 19, 4960–4964.

34

Drozdov, I. K.; Alexandradinata, A.; Jeon, S.; Nadj-Perge, S.; Ji, H. W.; Cava, R. J.; Bernevig, B. A.; Yazdani, A. One-dimensional topological edge states of bismuth bilayers. Nat. Phys. 2014, 10, 664–669.

Nano Research
Pages 2374-2381
Cite this article:
Lyu Y, Daneshmandi S, Huyan S, et al. Flexible atomic buckling and homogeneous edge states in few-layer Bi(110) films. Nano Research, 2022, 15(3): 2374-2381. https://doi.org/10.1007/s12274-021-3735-y
Topics:

775

Views

6

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 05 May 2021
Revised: 22 June 2021
Accepted: 28 July 2021
Published: 12 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return