AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Editorial | Open Access

Integrated nanoelectronic-photonic devices and bioresorbable materials

Departments of Materials Science and Engineering, Biomedical Engineering and Neurological Surgery, Simpson Querrey Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
Show Author Information

References

[1]
Kan, F.; Ershad, F.; Rao, Z.; Yu, C. J. Flexible organic solar cells for biomedical devices. Nano Res. 2021, 14, 2891-2903.
[2]
Yoo, Y. J.; Heo, S.-Y.; Kim, Y. J.; Ko, J. H.; Mira, Z. F.; Song, Y. M. Functional photonic structures for external interaction with flexible/wearable devices. Nano Res. 2021, 14, 2904-2918.
[3]
Ding, H.; Lv, G. Q.; Shi, Z.; Cheng, D. L.; Xie, Y.; Huang, Y. X.; Yin, L.; Yang, J.; Wang, Y. T.; Sheng, X. Optoelectronic sensing of biophysical and biochemical signals based on photon recycling of a micro-LED. Nano Res. 2021, 14, 3208-3213
[4]
Song, J.-K.; Kim, M. S.; Yoo, S.; Koo, J. H.; Kim, D.-H. Materials and devices for flexible and stretchable photodetectors and lightemitting diodes. Nano Res. 2021, 14, 2919-2937.
[5]
Seo, S. G.; Kim, S. Y.; Jeong, J.; Jin, S. H. Progress in light-to-frequency conversion circuits based on low dimensional semiconductors. Nano Res. 2021, 14, 2938-2964.
[6]
Seo, S. G.; Jeong, J.; Kim, S. Y.; Kumar, A.; Jin, S. H. Reversible and controllable threshold voltage modulation for n-channel MoS2 and p-channel MoTe2 field-effect transistors via multiple counter doping with ODTS/poly-L-lysine charge enhancers. Nano Res. 2021, 14, 3214-3227.
[7]
Nam, S.-H; Hyun, G.; Cho, D.; Han, S.; Bae, G.; Chen, H.; Kim, K.; Ham, Y.; Park, J.; Jeon, S. Fundamental principles and development of proximity-field nanopatterning toward advanced 3D nanofabrication. Nano Res. 2021, 14, 2965-2980.
[8]
Wei, Q. L.; Kuhn, D. L.; Zander, Z.; DeLacy, B. G.; Dai, H.-L.; Sun, Y. G. Silica-coating-assisted nitridation of TiO2 nanoparticles and their photothermal property. Nano Res. 2021, 14, 3228-3233.
[9]
Zhang, W. Q.; Mao, K. K.; Low, J. X.; Liu, H. J.; Bo, Y. N.; Ma, J.; Liu, Q. X.; Jiang, Y. W.; Yang, J. Z.; Pan, Y. et al. Working-in-tandem mechanism of multi-dopants in enhancing electrocatalytic nitrogen reduction reaction performance of carbonbased materials. Nano Res. 2021, 14, 3234-3239.
[10]
Li, Y.; Ling, W.; Liu, X. Y.; Shang, X.; Zhou, P.; Chen, Z. R.; Xu, H.; Huang, X. Metal-organic frameworks as functional materials for implantable flexible biochemical sensors. Nano Res. 2021, 14, 2981-3009.
[11]
Sarkar, A.; Lee, Y.; Ahn, J.-H. Si nanomebranes: Material properties and applications. Nano Res. 2021, 14, 3010-3032.
[12]
Xu, Y. D.; Fei, Q. H.; Page, M.; Zhao, G. G.; Ling, Y.; Chen, D.; Yan, Z. Laser-induced graphene for bioelectronics and soft actuators. Nano Res. 2021, 14, 3033-3050.
[13]
Cao, Q. Carbon nanotube transistor technology for More-Moore scaling. Nano Res. 2021, 14, 3051-3069.
[14]
Kwon, Y. W.; Jun, Y. S.; Park, Y.-G.; Jang, J.; Park, J.-U. Recent advances in electronic devices for monitoring and modulation of brain. Nano Res. 2021, 14, 3070-3095.
[15]
Qiang, Y.; Gu, W.; Liu, Z. H.; Liang, S. C.; Ryu, J. H.; Seo, K. J.; Liu, W. T.; Fang, H. Crosstalk in polymer microelectrode arrays. Nano Res. 2021, 14, 3240-3247.
[16]
Kang, K.; Park, J.; Kim, K.; Yu, K. Y. Recent developments of emerging inorganic, metal and carbonbased nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Res. 2021, 14, 3096-3111.
[17]
Chen, X. J.; Gao, X. X.; Nomoto, A.; Shi, K. R.; Lin, M. Y.; Hu, H. J.; Gu, Y.; Zhu, Y. Z.; Wu, Z. H.; Chen, X. et al. Fabric-substrated capacitive biopotential sensors enhanced by dielectric nanoparticles. Nano Res. 2021, 14, 3248-3252.
[18]
Wang, T.; Bao, Y. W.; Zhuang, M. D.; Li, J. C.; Chen, J. C.; Xu, H. X. Nanoscale engineering of conducting polymers for emerging applications in soft electronics. Nano Res. 2021, 14, 3112-3125.
[19]
Kang, S. J.; Hong, H.; Jeong, C.; Lee, J. S.; Ryu, H.; Yang, J.; Kim, J. U.; Shin, Y. J.; Kim, T. Avoiding heating interference and guided thermal conduction in stretchable devices using thermal conductive composite islands. Nano Res. 2021, 14, 3253-3259.
[20]
Sung, S. H.; Kim, T. J.; Shin, H.; Namkung, H.; Im, T. H.; Wang, H. S.; Lee, K. J. Memory-centric neuromorphic computing for unstructured data processing. Nano Res. 2021, 14, 3126-3142.
[21]
Yoo, J. I.; Kim, S. H.; Ko, H. C. Stick-and-play system based on interfacial adhesion control enhanced by micro/nanostructures. Nano Res. 2021, 14, 3143-3158.
Nano Research
Pages 2885-2887
Cite this article:
Rogers JA. Integrated nanoelectronic-photonic devices and bioresorbable materials. Nano Research, 2021, 14(9): 2885-2887. https://doi.org/10.1007/s12274-021-3742-z
Part of a topical collection:

1070

Views

34

Downloads

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Published: 05 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return