AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin films

Heng Zhang( )Jamo MomandJoshua LevinskyQikai GuoXiaotian ZhuGert H ten BrinkGraeme R. BlakeGeorge PalasantzasBart J. Kooi( )
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Show Author Information

Graphical Abstract

Abstract

Bi2Te3-based alloys are known to have outstanding thermoelectric properties. Although structure–property relations have been studied, still, detailed analysis of the atomic and nano-scale structure of Bi2Te3 thin film in relation to their thermoelectric properties remains poorly explored. Herein, highly-textured (HT) and single-crystal-like (SCL) Bi2Te3 films have been grown using pulsed laser deposition (PLD) on Si wafer covered with (native or thermal) SiOx and mica substrates. All films are highly textured with c-axis out-of-plane, but the in-plane orientation is random for the films grown on oxide and single-crystal-like for the ones grown on mica. The power factor of the film on thermal oxide is about four times higher (56.8 μW·cm−1·K−2) than that of the film on mica (12.8 μW·cm−1·K−2), which is comparable to the one of the polycrystalline ingot at room temperature (RT). Reduced electron scattering in the textured thin films results in high electrical conductivity, where the SCL film shows the highest conductivity. However, its Seebeck coefficient shows a low value. The measured properties are correlated with the atomic structure details unveiled by scanning transmission electron microscopy. For instance, the high concentration of stacking defects observed in the HT film is considered responsible for the increase of Seebeck coefficient compared to the SCL film. This study demonstrates the influence of nanoscale structural effects on thermoelectric properties, which sheds light on tailoring thermoelectric thin films towards high performance.

References

1

Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A.; Yu, B.; Yan, X.; Wang, D. Z.; Muto, A.; Vashaee, D. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634–638.

2

Soni, A.; Zhao, Y. Y.; Yu, L. G.; Aik, M. K. K.; Dresselhaus, M. S.; Xiong, Q. H. Enhanced thermoelectric properties of solution grown Bi2Te3-xSex nanoplatelet composites. Nano Lett. 2012, 12, 1203–1209.

3

Fang, H. Y.; Bahk, J. H.; Feng, T. L.; Cheng, Z.; Mohammed, A. M. S.; Wang, X. W.; Ruan, X. L.; Shakouri, A.; Wu, Y. Thermoelectric properties of solution-synthesized n-type Bi2Te3 nanocomposites modulated by Se: An experimental and theoretical study. Nano Res. 2016, 9, 117–127.

4

Hao, F.; Qiu, P. F.; Tang, Y. S.; Bai, S. Q.; Xing, T.; Chu, H. S.; Zhang, Q. H.; Lu, P.; Zhang, T. S.; Ren, D. D. et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ. Sci. 2016, 9, 3120–3127.

5

Hao, F.; Xing, T.; Qiu, P. F.; Hu, P.; Wei, T. R.; Ren, D. D.; Shi, X.; Chen, L. D. Enhanced thermoelectric performance in n-type Bi2Te3-based alloys via suppressing intrinsic excitation. ACS Appl. Mater. Interfaces 2018, 10, 21372–21380.

6

Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114.

7

Chowdhury, I.; Prasher, R.; Lofgreen, K.; Chrysler, G.; Narasimhan, S.; Mahajan, R.; Koester, D.; Alley, R.; Venkatasubramanian, R. On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 2009, 4, 235–238.

8

Wu, Z. H.; Mu, E. Z.; Wang, Z. C.; Chen, X.; Wu, Z. M.; Liu, Y.; Hu, Z. Y. Bi2Te3 nanoplates’ selective growth morphology on different interfaces for enhancing thermoelectric properties. Cryst. Growth Des. 2019, 19, 3639–3646.

9

Le, P. H.; Liao, C. N.; Luo, C. W.; Leu, J. Thermoelectric properties of nanostructured bismuth-telluride thin films grown using pulsed laser deposition. J. Alloys Compd. 2014, 615, 546–552.

10

Bassi, A. L.; Bailini, A.; Casari, C. S.; Donati, F.; Mantegazza, A.; Passoni, M.; Russo, V.; Bottani, C. E. Thermoelectric properties of Bi-Te films with controlled structure and morphology. J. Appl. Phys. 2009, 105, 124307.

11

Lin, J. M.; Chen, Y. C.; Lin, C. P. Annealing effect on the thermoelectric properties of Bi2Te3 thin films prepared by thermal evaporation method. J. Nanomater. 2013, 2013, 201017.

12

Fan, P.; Zhang, P. C.; Liang, G. X.; Li, F.; Chen, Y. X.; Luo, J. T.; Zhang, X. H.; Chen, S.; Zheng, Z. H. High-performance bismuth telluride thermoelectric thin films fabricated by using the two-step single-source thermal evaporation. J. Alloys Compd. 2020, 819, 153027.

13

Suh, J.; Yu, K. M.; Fu, D. Y.; Liu, X. Y.; Yang, F.; Fan, J.; Smith, D. J.; Zhang, Y. H.; Furdyna, J. K.; Dames, C. et al. Simultaneous enhancement of electrical conductivity and thermopower of Bi2Te3 by multifunctionality of native defects. Adv. Mater. 2015, 27, 3681–3686.

14

Qiao, J. X.; Zhao, Y.; Jin, Q.; Tan, J.; Kang, S. Q.; Qiu, J. H.; Tai, K. P. Tailoring nanoporous structures in Bi2Te3 thin films for improved thermoelectric performance. ACS Appl. Mater. Interfaces 2019, 11, 38075–38083.

15

Zeipl, R.; Walachová, J.; Pavelka, M.; Jelínek, M.; Studnička, V.; Kocourek, T. Power factor of very thin thermoelectric layers of different thickness prepared by laser ablation. Appl. Phys. A 2008, 93, 663–667.

16

Vigil-Galán, O.; Cruz-Gandarilla, F.; Fandiño, J.; Roy, F.; Sastré-Hernández, J.; Contreras-Puente, G. Physical properties of Bi2Te3 and Sb2Te3 films deposited by close space vapor transport. Semicond. Sci. Technol. 2009, 24, 025025.

17

Zhang, Z. W.; Wang, Y.; Deng, Y.; Xu, Y. B. The effect of (00l) crystal plane orientation on the thermoelectric properties of Bi2Te3 thin film. Solid State Commun. 2011, 151, 1520–1523.

18

Jin, Q.; Shi, W. B.; Qiao, J. X.; Sun, C.; Tai, K. P.; Lei, H.; Jiang, X. Enhanced thermoelectric properties of bismuth telluride films with in-plane and out-of-plane well-ordered microstructures. Scr Mater. 2016, 119, 33–37.

19

Saito, Y.; Fons, P.; Bolotov, L.; Miyata, N.; Kolobov, A. V.; Tominaga, J. A two-step process for growth of highly oriented Sb2Te3 using sputtering. AIP Adv. 2016, 6, 045220.

20

Li, H. D.; Wang, Z. Y.; Kan, X.; Guo, X.; He, H. T.; Wang, Z.; Wang, J. N.; Wong, T. L.; Wang, N.; Xie, M. H. The van der Waals epitaxy of Bi2Se3 on the vicinal Si (111) surface: An approach for preparing high-quality thin films of a topological insulator. New J. Phys. 2010, 12, 103038.

21

Saito, Y.; Fons, P.; Makino, K.; Mitrofanov, K. V.; Uesugi, F.; Takeguchi, M.; Kolobov, A. V.; Tominaga, J. Compositional tuning in sputter-grown highly-oriented Bi-Te films and their optical and electronic structures. Nanoscale 2017, 9, 15115–15121.

22

Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Manifestation of topological protection in transport properties of epitaxial Bi2Se3 thin films. Phys. Rev. Lett. 2012, 109, 066803.

23

Vermeulen, P. A.; Mulder, J.; Momand, J.; Kooi, B. J. Strain engineering of van der Waals heterostructures. Nanoscale 2018, 10, 1474–1480.

24

Zhang, H.; Yimam, D. T.; de Graaf, S.; Momand, J.; Vermeulen, P. A.; Wei, Y. F.; Noheda, B.; Kooi, B. J. Strain relaxation in "2D/2D and 2D/3D systems": Highly textured mica/Bi2Te3, Sb2Te3/Bi2Te3, and Bi2Te3/GeTe heterostructures. ACS Nano 2021, 15, 2869–2879.

25
Rijnders, G.; Blank, D.H. A. In situ diagnostics by high-pressure RHEED during PLD. In Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials. Eason, R., Ed.; John Wiley & Sons, Inc.: Hoboken, 2007; pp 85-97.
26

Tang, F.; Parker, T.; Wang, G. C.; Lu, T. M. Surface texture evolution of polycrystalline and nanostructured films: RHEED surface pole figure analysis. J. Phys. D:. Appl. Phys. 2007, 40, R427–R439.

27

Ning, J.; Martinez, J. C.; Momand, J.; Zhang, H.; Tiwari, S. C.; Shimojo, F.; Nakano, A.; Kalia, R. K.; Vashishta, P.; Branicio, P. S. et al. Differences in Sb2Te3 growth by pulsed laser and sputter deposition. Acta Mater. 2020, 200, 811–820.

28

Kim, Y.; Cho, S.; DiVenere, A.; Wong, G. K. L.; Ketterson, J. B. Composition-dependent layered structure and transport properties in BiTe thin films. Phys. Rev. B 2001, 63, 155306.

29

Takagaki, Y.; Jenichen, B.; Kopp, V.; Jahn, U.; Ramsteiner, M.; Herrmann, C. Semicoherent growth of Bi2Te3 layers on InP substrates by hot wall epitaxy. Semicond. Sci. Technol. 2014, 29, 075021.

30

Boschker, J. E.; Tisbi, E.; Placidi, E.; Momand, J.; Redaelli, A.; Kooi, B. J.; Arciprete, F.; Calarco, R. Textured Sb2Te3 films and GeTe/Sb2Te3 superlattices grown on amorphous substrates by molecular beam epitaxy. AIP Adv. 2017, 7, 015106.

31

Harrison, S. E.; Li, S.; Huo, Y.; Zhou, B.; Chen, Y. L.; Harris, J. S. Two-step growth of high quality Bi2Te3 thin films on Al2O3(0001) by molecular beam epitaxy. Appl. Phys. Lett. 2013, 102, 171906.

32

Lotnyk, A.; Hilmi, I.; Ross, U.; Rauschenbach, B. Van der Waals interfacial bonding and intermixing in GeTe-Sb2Te3-based superlattices. Nano Res. 2018, 11, 1676–1686.

33

Borisova, S.; Krumrain, J.; Luysberg, M.; Mussler, G.; Grützmacher, D. Mode of growth of ultrathin topological insulator Bi2Te3 films on Si (111) substrates. Cryst. Growth Des. 2012, 12, 6098–6103.

34

Momand, J.; Lange, F. R. L.; Wang, R. N.; Boschker, J. E.; Verheijen, M. A.; Calarco, R.; Wuttig, M.; Kooi, B. J. Atomic stacking and van-der-Waals bonding in GeTe-Sb2Te3 superlattices. J. Mater. Res. 2016, 31, 3115–3124.

35

Ross, U.; Lotnyk, A.; Thelander, E.; Rauschenbach, B. Microstructure evolution in pulsed laser deposited epitaxial Ge-Sb-Te chalcogenide thin films. J. Alloys Compd. 2016, 676, 582–590.

36

Wang, N.; Chen, H. J.; He, H. C.; Norimatsu, W.; Kusunoki, M.; Koumoto, K. Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity. Sci. Rep. 2013, 3, 3449.

37

Alam, H.; Ramakrishna, S. A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2013, 2, 190–212.

38

Bando, H.; Koizumi, K.; Oikawa, Y.; Daikohara, K.; Kulbachinskii, V. A.; Ozaki, H. The time-dependent process of oxidation of the surface of Bi2Te3 studied by X-ray photoelectron spectroscopy. J. Phys.: Condens. Matter 2000, 12, 5607–5616.

39
Goldsmid, H. J. Thermoelectric Refrigeration; Temple Press Books: London, 1964.
40

Deng, Y.; Zhang, Z. W.; Wang, Y.; Xu, Y. B. Preferential growth of Bi2Te3 films with a nanolayer structure: Enhancement of thermoelectric properties induced by nanocrystal boundaries. J. Nanopart. Res. 2012, 14, 775.

41

Mao, J.; Wu, Y. X.; Song, S. W.; Zhu, Q.; Shuai, J.; Liu, Z. H.; Pei, Y. Z.; Ren, Z. F. Defect engineering for realizing high thermoelectric performance in n-type Mg3Sb2-based materials. ACS Energy Lett, 2017, 2, 2245–2250.

42
Nurnus, J.; Bottner, H.; Beyer, H.; Lambrecht, A. Epitaxial bismuth telluride layers grown on [111] barium fluoride substrates suitable for MQW-growth. In Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99(Cat. No.99TH8407), Baltimore, 1999, pp 696-699.
43
Rowe, D.M. CRC Handbook of Thermoelectrics, CRC Press: Boca Raton, 1995.
44

Bos, J. W. G.; Zandbergen, H. W.; Lee, M. H.; Ong, N. P.; Cava, R. J. Structures and thermoelectric properties of the infinitely adaptive series (Bi2)m(Bi2Te3)n. Phys. Rev. B 2007, 75, 195203.

Nano Research
Pages 2382-2390
Cite this article:
Zhang H, Momand J, Levinsky J, et al. Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin films. Nano Research, 2022, 15(3): 2382-2390. https://doi.org/10.1007/s12274-021-3743-y
Topics:

868

Views

9

Crossref

10

Web of Science

10

Scopus

1

CSCD

Altmetrics

Received: 23 March 2021
Revised: 07 July 2021
Accepted: 15 July 2021
Published: 26 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return