AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Study on mechanism of low-temperature oxidation of n-hexanal catalysed by 2D ultrathin Co3O4 nanosheets

Leilei Miao1Xiaolong Tang1,2Shunzheng Zhao1,2Xizhou Xie1Chengcheng Du1Tian Tang1Honghong Yi1,2( )
Department of Environmental Enginnering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
Show Author Information

Graphical Abstract

Abstract

Achieving high catalytic performance with lower possible cost and higher energetic efficiency is critical for catalytic oxidation of volatile organic compounds (VOCs). However, traditional thermocatalysts generally undergo low catalytic activity and fewer active sites. Herein, this paper synthesizes nearly all-surface-atomic, ultrathin two-dimensional (2D) Co3O4 nanosheets to address these problems through offering a numerous active sites and high electron mobility. The 2D Co3O4 nanosheets (1.70 nm) exhibit catalyzation to the total oxidation of n-hexanal at the lower temperature of T90% = 202 °C, and at the space velocity of 5.0 × 104 h−1. It is over 1.2 and 6 times higher catalytic activity than that of 2D CoO nanosheets (1.71 nm) and bulk Co3O4 counterpart, respectively. Transient absorption spectroscopy analysis shows that the oxygen vacancy defect traps electrons, thereby preventing the recombination with holes, increasing the lifetime of τ1 electrons, and making electron–holes reach a non-dynamic equilibrium. The longer the electron lifetime is, the easier the oxygen vacancy defects capture electrons. Furthermore, the defects combine with oxygen to form active oxygen components. Compared with the lattice oxygen involved in the reaction of bulk Co3O4, the nanosheets change the catalytic reaction path, which effectively reduces the activation energy barrier from 34.07 to 27.15 kJ/mol. The changed surface disorder, the numerous coordinatively-unsaturated Co atoms and the high ratio of Oads/Olat on the surface of 2D Co3O4 nanosheets are responsible for the catalytic performance.

Electronic Supplementary Material

Download File(s)
12274_2021_3746_MOESM1_ESM.pdf (862.4 KB)

References

1

He, C.; Cheng, J.; Zhang, X.; Douthwaite, M.; Pattisson, S.; Hao, Z. P. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chem. Rev 2019, 119, 4471–4568.

2

Yang, X. Q.; Ma, X. Y.; Yu, X. L.; Ge, M. F. Exploration of strong metal-support interaction in zirconia supported catalysts for toluene oxidation. Appl. Catal. B:Environ 2019, 263, 118355.

3

Liang, Y. J.; Liu, Y. X.; Deng, J. G.; Zhang, K. F.; Hou, Z. Q.; Zhao, X. T.; Zhang, X.; Zhang, K. Y.; Wei, R. J.; Dai, H. X. Coupled palladium–tungsten bimetallic nanosheets/TiO2 hybrids with enhanced catalytic activity and stability for the oxidative removal of benzene. Environ. Sci. Technol 2019, 53, 5926–5935.

4

Zhao, S. Z.; Wen, Y. F.; Peng, X. Y.; Mi, Y. Y.; Liu, X. J.; Liu, Y. F.; Zhuo, L. C.; Hu, G. Z.; Luo, J.; Tang, X. L. Isolated single-atom Pt sites for highly selective electrocatalytic hydrogenation of formaldehyde to methanol. J. Mater. Chem. A 2020, 8, 8913–8919.

5

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res 2020, 13, 3165–3182.

6

Zhao, Q.; Zheng, Y. F.; Song, C. F.; Liu, Q. L.; Ji, N.; Ma, D. G.; Lu, X. B. Novel monolithic catalysts derived from in-situ decoration of Co3O4 and hierarchical Co3O4@MnOx on Ni foam for VOC oxidation. Appl. Catal. B:Environ 2020, 265, 118552.

7

Zhu, Q.; Yan, J. R.; Dai, Q. G.; Wu, Q. Q.; Cai, Y. P.; Wu, J. Y.; Wang, X. Y.; Zhan, W. C. Ethylene glycol assisted synthesis of hierarchical Fe-ZSM-5 nanorods assembled microsphere for adsorption Fenton degradation of chlorobenzene. J. Hazard. Mater 2020, 385, 121581.

8

Wang, B. F.; Chen, B. X.; Sun, Y. H.; Xiao, H. L.; Xu, X. X.; Fu, M. L.; Wu, J. L.; Chen, L. M.; Ye, D. Q. Effects of dielectric barrier discharge plasma on the catalytic activity of Pt/CeO2 catalysts. Appl. Catal. B:Environ 2018, 238, 328–338.

9

Wang, P. F.; Mao, Y. S.; Li, L. N.; Shen, Z. R.; Luo, X.; Wu, K. F.; An, P. F.; Wang, H. T.; Su, L. N.; Li, Y. et al. Unraveling the interfacial charge migration pathway at the atomic level in a highly efficient Z‐scheme photocatalyst. Angew. Chem., Int. Ed 2019, 131, 11451–11456.

10

Dong, N.; Fu, J. L.; Ye, Q.; Chen, M. Y.; Fu, Z. D.; Dai, H. X. Effect of preparation method on catalytic performance of Ag/OMS-2 for the oxidation of ethyl acetate and formaldehyde. Catal. Surv. Asia 2020, 24, 259–268.

11

Weng, X. L.; Meng, Q. J.; Liu, J. J.; Jiang, W. Y.; Pattisson, S.; Wu, Z. B. Catalytic oxidation of chlorinated organics over lanthanide perovskites: Effects of phosphoric acid etching and water vapor on chlorine desorption behavior. Environ. Sci. Technol 2019, 53, 884–893.

12

Dai, Q. G.; Wu, J. Y.; Deng, W.; Hu, J. S.; Wu, Q. Q.; Guo, L. M.; Sun, W.; Zhan, W. C.; Wang, X. Y. Comparative studies of P/CeO2 and Ru/CeO2 catalysts for catalytic combustion of dichloromethane: From effects of H2O to distribution of chlorinated by-products. Appl. Catal. B:Environ 2019, 249, 9–18.

13

Qu, W. Q.; Wang, P. L.; Gao, M.; Hasegawa, J. Y.; Shen, Z.; Wang, Q.; Li, R. M.; Zhang, D. S. Delocalization effect promoted the indoor air purification via directly unlocking the ring-opening pathway of toluene. Environ. Sci. Technol 2020, 54, 9693–9701.

14

Wang, X. Y.; Rui, Z. B.; Ji, H. B. DFT study of formaldehyde oxidation on silver cluster by active oxygen and hydroxyl groups: Mechanism comparison and synergistic effect. Catal. Today 2020, 347, 124–133.

15

Hu, L. H.; Peng, Q.; Li, Y. D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc 2008, 130, 16136–16137.

16

Hu, L. H.; Sun, K. Q.; Peng, Q.; Xu, B. Q.; Li, Y. D. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res 2010, 3, 363–368.

17

Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746–749.

18

Liu, Q.; Wang, L. C.; Chen, M.; Cao, Y.; He, H. Y.; Fan, K. N. Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for total oxidation of propane. J. Catal 2009, 263, 104–113.

19

Haber, J.; Turek, W. Kinetic studies as a method to differentiate between oxygen species involved in the oxidation of propene. J. Catal 2000, 190, 320–326.

20

Yu, Y. B.; Takei, T.; Ohashi, H.; He, H.; Zhang, X. L.; Haruta, M. Pretreatments of Co3O4 at moderate temperature for CO oxidation at-80°C. J. Catal 2009, 267, 121–128.

21

Sun, Y. F.; Xie, Y.; Wu, C. Z.; Zhang, S. D.; Jiang, S. S. Aqueous synthesis of mesostructured BiVO4 quantum tubes with excellent dual response to visible light and temperature. Nano Res 2010, 3, 620–631.

22

Ma, C. Y.; Mu, Z.; He, C.; Li, P.; Li, J. J.; Hao, Z. P. Catalytic oxidation of benzene over nanostructured porous Co3O4-CeO2 composite catalysts. J. Environ. Sci 2011, 23, 2078–2086.

23

Liu, X. J.; Xi, W.; Li, C.; Li, X. B.; Shi, J.; Shen, Y. L.; He, J.; Zhang, L. H.; Xie, L.; Sun, X. M. et al. Nanoporous Zn-doped Co3O4 sheets with single-unit-cell-wide lateral surfaces for efficient oxygen evolution and water splitting. Nano Energy 2018, 44, 371–377.

24

Gao, S.; Jiao, X. C.; Sun, Z. T.; Zhang, W. H.; Sun, Y. F.; Wang, C. M.; Hu, Q. T.; Zu, X. L.; Yang, F.; Yang, S. Y. et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angew. Chem., Int. Ed 2016, 55, 698–702.

25

Cai, Y. F.; Xu, J.; Guo, Y.; Liu, J. Y. Ultrathin, polycrystalline, two-dimensional Co3O4 for low-temperature CO oxidation. ACS Catal 2019, 9, 2558–2567.

26

Zhu, X. D.; Wang, K. X.; Zhu, J. L.; Koga, M. Analysis of cooking oil fumes by ultraviolet spectrometry and gas chromatography− mass spectrometry. J. Agric. Food Chem 2001, 49, 4790–4794.

27

Feng, Y. L.; Huang, J.; Wen, S.; Chen, Y. J.; Sheng, G. Y.; Fu, J. M. Concentration and pattern of carbonyl compounds from oil smoke in restaurant. Environ. Sci. Technol 2008, 31, 66–68,76.

28

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater 2011, 10, 780–786.

29

Xiao, Z. Y.; Fan, L. L.; Xu, B.; Zhang, S. Q.; Kang, W. P.; Kang, Z. X.; Lin, H.; Liu, X. P.; Zhang, S. Y.; Sun, D. F. Green fabrication of ultrathin Co3O4 nanosheets from metal–organic framework for robust high-rate supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 41827–41836.

30

Lee, D. U.; Scott, J.; Park, H. W.; Abureden, S.; Choi, J. Y.; Chen, Z. W. Morphologically controlled Co3O4 nanodisks as practical bi-functional catalyst for rechargeable zinc–air battery applications. Electrochem. Commun 2014, 43, 109–112.

31

Wang, B.; Lu, X. Y.; Tang, Y. Y.; Ben, W. W. Cover picture: General polyethyleneimine‐mediated synthesis of ultrathin hexagonal Co3O4 nanosheets with reactive facets for lithium‐ion batteries (ChemElectroChem 1/2016) . ChemElectroChem 2016, 3, 1.

32

Hadjiev, V. G.; Iliev, M. N.; Vergilov, I. V. The Raman spectra of Co3O4. J. Phys. C:Solid State Phys 1998, 21, L199.

33

Zhang, Y. C.; Li, J.; Zhang, M.; Dionysiou, D. D. Size-tunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI) . Environ. Sci. Technol 2011, 45, 9324–9331.

34

Sun, Y. F.; Sun, Z. H.; Gao, S.; Cheng, H.; Liu, Q. H.; Lei, F. C.; Wei, S. Q.; Xie, Y. All-surface-atomic-metal chalcogenide sheets for high-efficiency visible-light photoelectrochemical water splitting. Adv. Energy Mater 2014, 4, 1300611.

35

Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem., Int. Ed 2010, 49, 4059–4062.

36

Yang, H. G.; Deng, J. G.; Liu, Y. X.; Xie, S. H.; Xu, P.; Dai, H. X. Pt/Co3O4/3DOM Al2O3: Highly effective catalysts for toluene combustion. Chin. J. Catal 2016, 37, 934–946.

37

Wang, Y.; Huang, J.; Cao, J. L.; Li, G. J.; Zhang, Z. Y. Cobalt oxide decorated flower-like g-C3N4 hybrid nanomaterials for carbon monoxide oxidation. Surf. Rev. Lett 2017, 24, 1750058.

38

Yin, C. C.; Liu, Y. N.; Xia, Q. N.; Kang, S. F.; Li, X.; Wang, Y. G.; Cui, L. F. Oxygen vacancy-rich nitrogen-doped Co3O4 nanosheets as an efficient water-resistant catalyst for low temperature CO oxidation. J. Colloid Interface Sci 2019, 553, 427–435.

39

Duan, Y. K.; Zhang, Q. L.; Song, Z. X.; Wang, J.; Tang, X. S.; Liu, Q. X.; Zhang, T. F. Effect of preparation methods on the catalytic activity of Co3O4 for the decomposition of N2O. Res. Chem. Intermed 2017, 43, 7241–7255.

40

Tüysüz, H.; Comotti, M.; Schüth, F. Ordered mesoporous Co3O4 as highly active catalyst for low temperature CO-oxidation. Chem. Commun 2008, 4022–4024.

41

Sun, Z. Q.; Liao, T.; Dou, Y. H.; Hwang, S. M.; Park, M. S.; Jiang, L.; Kim, J. H.; Dou, S. X. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun 2014, 5, 3813.

42

Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc 2014, 136, 13925–13931.

43

Wang, X. X.; Li, T. T.; Zheng, Y. Q. Co3O4 nanosheet arrays treated by defect engineering for enhanced electrocatalytic water oxidation. Int. J. Hydrogen Energy 2018, 43, 2009–2017.

44

Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed 2016, 128, 5363–5367.

45

Xie, S. H.; Dai, H. X.; Deng, J. G.; Liu, Y. X.; Yang, H. G.; Jiang, Y.; Tan, W.; Ao, A. S.; Guo, G. S. Au/3DOM Co3O4: Highly active nanocatalysts for the oxidation of carbon monoxide and toluene. Nanoscale 2013, 5, 11207–11219.

46

Li, S. D.; Wang, H. S.; Li, W. M.; Wu, X. F.; Tang, W. X.; Chen, Y. F. Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor. Appl. Catal. B:Environ 2015, 166–167,260-269.

47

Restovic, A.; Rı́os, E.; Barbato, S.; Ortiz, J.; Gautier, J. L. Oxygen reduction in alkaline medium at thin MnxCo3−xO4 (0≤x≤1) spinel films prepared by spray pyrolysis. Effect of oxide cation composition on the reaction kinetics. J. Electroanal. Chem 2002, 522, 141–151.

48

Mei, J.; Xie, J. K.; Qu, Z.; Ke, Y.; Hu, X. F.; Yan, N. Q. Ordered mesoporous spinel Co3O4 as a promising catalyst for the catalytic oxidation of dibromomethane. Mol. Catal 2018, 461, 60–66.

49

Chuang, T. J.; Brundle, C. R.; Rice, D. W. Interpretation of the X-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces. Surf. Sci 1976, 59, 413–429.

50

Wang, Y. C.; Zhou, T.; Jiang, K.; Da, P. M.; Peng, Z.; Tang, J.; Kong, B.; Cai, W. B.; Yang, Z. Q.; Zheng, G. F. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater 2014, 4, 1400696.

51

Cai, T.; Huang, H.; Deng, W.; Dai, Q. G.; Liu, W.; Wang, X. Y. Catalytic combustion of 1, 2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts. Appl. Catal. B:Environ 2015, 166–167,393-405.

52

Wu, Z. X.; Deng, J. G.; Liu, Y. X.; Xie, S. H.; Jiang, Y.; Zhao, X. T.; Yang, J.; Arandiyan, H.; Guo, G. S.; Dai, H. S. Three-dimensionally ordered mesoporous Co3O4-supported Au-Pd alloy nanoparticles: High-performance catalysts for methane combustion. J. Catal 2015, 332, 13–24.

53

Yan, Z. X.; Xu, Z. H.; Cheng, B.; Jiang, C. J. Co3O4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature. Appl. Surf. Sci 2017, 404, 426–434.

54

Tang, C. W.; Wang, C. B.; Chien, S. H. Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochim. Acta 2008, 473, 68–73.

55

Lin, H. Y.; Chen, Y. W. The mechanism of reduction of cobalt by hydrogen. Mater. Chem. Phys 2004, 85, 171–175.

56

Gao, C.; Chen, S. M.; Wang, Y.; Wang, J. W.; Zheng, X. S.; Zhu, J. F.; Song, L.; Zhang, W. K.; Xiong, Y. J. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: The role of electron transfer. Adv. Mater 2018, 30, 1704624.

57

Li, K.; Zhang, R. R.; Gao, R. J.; Shen, G. Q.; Pan, L.; Yao, Y. D.; Yu, K. H.; Zhang, X. W.; Zou, J. J. Metal-defected spinel MnxCo3-xO4 with octahedral Mn-enriched surface for highly efficient oxygen reduction reaction. Appl. Catal. B:Environ 2019, 244, 536–545.

58

Sun, Z. H.; Yan, W. S.; Yao, T.; Liu, Q. H.; Xie, Y.; Wei, S. Q. XAFS in dilute magnetic semiconductors. Dalton Trans 2013, 42, 13779–13801.

59

Chen, X.; Zhong, C.; Liu, B.; Liu, Z.; Bi, X. X.; Zhao, N. Q.; Han, X. P.; Deng, Y. D.; Lu, J.; Hu, W. B. Atomic layer Co3O4 nanosheets: The key to knittable Zn-Air batteries. Small 2018, 14, 1702987.

60

Sa, Y. J.; Kwon, K.; Cheon, J. Y.; Kleitz, F.; Joo, S. H. Ordered mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts. J. Mater. Chem. A 2013, 1, 9992–10001.

61

Sun, Y. F.; Liu, Q. H.; Gao, S.; Cheng, H.; Lei, F. C.; Sun, Z. H.; Jiang, Y.; Su, H. B.; Wei, S. Q.; Xie, Y. Pits confined in ultrathin cerium (IV) oxide for studying catalytic centers in carbon monoxide oxidation. Nat. Commun 2013, 4, 2899.

62

Liu, Y. X.; Dai, H. X.; Du, Y. C.; Deng, J. G.; Zhang, L.; Zhao, Z. X.; Au, C. T. Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene. J. Catal 2012, 287, 149–160.

63

Mo, S. P.; Li, S. D.; Li, J. Q.; Deng, Y. Z.; Peng, S. P.; Chen, J. Y.; Chen, Y. F. Rich surface Co (III) ions-enhanced Co nanocatalyst benzene/toluene oxidation performance derived from CoIICoIII layered double hydroxide. Nanoscale 2016, 8, 15763–15773.

64

Niu, J. R.; Qian, H. L.; Liu, J.; Liu, H. B.; Zhang, P.; Duan, E. H. Process and mechanism of toluene oxidation using Cu1-yMn2CeyOx/Sepiolite prepared by the co-precipitation method. J. Hazard. Mater 2018, 357, 332–340.

65

Zhang, G. D.; Han, W. L.; Zhao, H. J.; Zong, L. Y.; Tang, Z. C. Solvothermal synthesis of well-designed ceria-tin-titanium catalysts with enhanced catalytic performance for wide temperature NH3-SCR reaction. Appl. Catal. B:Environ 2018, 226, 117–126.

66

Antolini, E. Photo-assisted methanol oxidation on Pt-TiO2 catalysts for direct methanol fuel cells: A short review. Appl. Catal. B:Environ 2018, 237, 491–503.

67

Jiao, X. C.; Chen, Z. W.; Li, X. D.; Sun, Y. F.; Gao, S.; Yan, W. S.; Wang, C. M.; Zhang, Q.; Lin, Y.; Luo, Y. et al. Defect-mediated electron-hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc 2017, 139, 7586–7594.

68

Zhao, H. Q.; Wang, J. O.; Zhang, L. X.; Rong, Y. C.; Chen, J.; Ibrahim, K.; Xing, X. R. Effects of oxygen vacancy on the electronic structure and multiferroics in sol-gel derived Pb0.8Co0.2TiO3 thin films. Dalton Trans 2013, 42, 10358–10364.

69

Xiang, D.; Chen, Y.; Zhao, G. T.; Wu, J. L.; Fu, M. L.; Huang, B. C.; Ye, D. Q. Study of hexanal decomposition with plasma-catalysis technology over MnOx/SBA-15 catalysts. Chin. J. Environ. Eng 2010, 4, 1851–1856.

Nano Research
Pages 1660-1671
Cite this article:
Miao L, Tang X, Zhao S, et al. Study on mechanism of low-temperature oxidation of n-hexanal catalysed by 2D ultrathin Co3O4 nanosheets. Nano Research, 2022, 15(2): 1660-1671. https://doi.org/10.1007/s12274-021-3746-8
Topics:

815

Views

21

Crossref

21

Web of Science

22

Scopus

1

CSCD

Altmetrics

Received: 08 May 2021
Revised: 28 June 2021
Accepted: 15 July 2021
Published: 18 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return