AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Directional design and synthesis of high-yield hollow Fe-MFI zeolite encapsulating ultra-small Fe2O3 nanoparticles by using mother liquid

Yi Zhai1Fumin Wang1Xubin Zhang1( )Guojun Lv2Yuzhou Wu1Tao Jiang1Qing Zhang1Mengyue Li1Mengyao Li1Yongkui Liu1
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Show Author Information

Abstract

How to directionally design the hollow zeolite via a green route is of great significance. Here, we successfully synthesized the hollow Fe-silicate-1 encapsulated ultra-small Fe2O3 nanoparticles (2.5 nm) with higher yield (85.2%) by mother liquid than traditional dissolution-recrystallization for the first time, which was achieved by precisely regulating the number and distribution of defects in zeolite and cleverly utilizing the TPAOH and nuclei in mother liquor. The effects of synthetic temperature, synthetic period and addition amount of parent zeolite on the formation of hollow zeolite have been investigated and the effect of synthetic conditions on the defects in parent zeolite has been also firstly quantified. The corresponding formation mechanism has been proposed. The abundant inner defects provided by the zeolite synthesized at 130 °C for 1 day and large amount of TPAOH remaining in mother liquid are conducive to the formation of hollow zeolite. Meanwhile, both parent zeolite and nuclei (4-, 5-member rings and structure units) in mother liquid obtained at 130 °C play the crucial roles in enhancing the zeolite yield. Notably, Fe2O3 nanoparticles could decompose into small fragments by the interaction with nuclei in mother liquid. Partial ultra-small Fe2O3 nanoparticles would be encapsulated in cavity and the rest could be inserted in the zeolite framework, which is significantly different from the conventional dissolution-recrystallization mechanism. The obtained encapsulated catalyst shows the superior catalytic performance and stability in phenol and tetracycline degradation reactions.

Electronic Supplementary Material

Download File(s)
12274_2021_3747_MOESM1_ESM.pdf (3.1 MB)

References

1

Ma, W.; Wang, K.; Pan, S. H.; Wang, H. Iron-exchanged zeolite micromotors for enhanced degradation of organic pollutants. Langmuir 2020, 36, 6924–6929.

2

Shukla, P.; Wang, S. B.; Singh, K.; Ang, H. M.; Tadé, M. O. Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. Appl. Catal. B: Environ. 2010, 99, 163–169.

3

Le, T. X. H.; Drobek, M.; Bechelany, M.; Motuzas, J.; Julbe, A.; Cretin, M. Application of Fe-MFI zeolite catalyst in heterogeneous electro-Fenton process for water pollutants abatement. Micropor. Mesopor. Mater. 2019, 278, 64–69.

4

Rakibuddin, M.; Mandal, S.; Ananthakrishnan, R. A novel ternary CuO decorated Ag3AsO4/GO hybrid as a Z-scheme photocatalyst for enhanced degradation of phenol under visible light. New J. Chem. 2017, 41, 1380–1389.

5

Deng, S. L.; Lv, G. J.; Zhai, Y.; Yang, Z. B.; Zhu, Y. Q.; Li, H. C.; Wang, F. M.; Zhang, X. B. Framework Fe-doped mobil five (MFI) zeolites as highly active and stable Fenton-like catalysts for basic dyes degradation. J. Nanosci. Nanotechnol. 2020, 20, 1520–1529.

6

Hu, L. X.; Yang, X. P.; Dang, S. T. An easily recyclable Co/SBA-15 catalyst: Heterogeneous activation of peroxymonosulfate for the degradation of phenol in water. Appl. Catal. B: Environ. 2011, 102, 19–26.

7

Zhu, Q.; Yan, J. R.; Dai, Q. G.; Wu, Q. Q.; Cai, Y. P.; Wu, J. Y.; Wang, X. Y.; Zhan, W. C. Ethylene glycol assisted synthesis of hierarchical Fe-ZSM-5 nanorods assembled microsphere for adsorption Fenton degradation of chlorobenzene. J. Hazard. Mater. 2020, 385, 121581.

8

Dai, C. Y.; Zhang, A. F.; Liu, M.; Gu, L.; Guo, X. W.; Song, C. S. Hollow alveolus-like nanovesicle assembly with metal-encapsulated hollow zeolite nanocrystals. ACS Nano 2016, 10, 7401–7408.

9

Yan, Y.; Wu, X. W.; Zhang, H. P. Catalytic wet peroxide oxidation of phenol over Fe2O3/MCM-41 in a fixed bed reactor. Sep. Purif. Technol. 2016, 171, 52–61.

10

Dai, C. Y.; Zhang, A. F.; Luo, L.; Zhang, X. B.; Liu, M.; Wang, J. H.; Guo, X. W.; Song, C. S. Hollow zeolite-encapsulated Fe-Cu bimetallic catalysts for phenol degradation. Catal. Today 2017, 297, 335–343.

11

Dai, C. Y.; Zhang, A. F.; Liu, M.; Guo, X. W.; Song, C. S. Hollow ZSM-5 with silicon-rich surface, double shells, and functionalized interior with metallic nanoparticles and carbon nanotubes. Adv. Funct. Mater. 2015, 25, 7479–7487.

12

Cui, T. L.; Ke, W. Y.; Zhang, W. B.; Wang, H. H.; Li, X. H.; Chen, J. S. Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape-selective catalysis. Angew. Chem., Int. Ed. 2016, 55, 9178–9182.

13

Wu, S. M.; Yang, X. Y.; Janiak, C. Confinement effects in zeolite-confined noble metals. Angew. Chem., Int. Ed. 2019, 58, 12340–12354.

14

Kim, J. C.; Lee, S.; Cho, K.; Na, K.; Lee, C.; Ryoo, R. Mesoporous MFI zeolite nanosponge supporting cobalt nanoparticles as a Fischer–Tropsch catalyst with high yield of branched hydrocarbons in the gasoline range. ACS Catal. 2014, 4, 3919–3927.

15

Wu, Y. Q.; Holdren, S.; Zhang, Y.; Oh, S. C.; Tran, D. T.; Emdadi, L.; Lu, Z.; Wang, M.; Woehl, T. J.; Zachariah, M. et al. Quantification of rhenium oxide dispersion on zeolite: Effect of zeolite acidity and mesoporosity. J. Catal. 2019, 372, 128–141.

16

Wang, L.; Zhang, J.; Yi, X. F.; Zheng, A. M.; Deng, F.; Chen, C. Y.; Ji, Y. Y.; Liu, F. J.; Meng, X. J.; Xiao, F. S. Mesoporous ZSM-5 zeolite-supported Ru nanoparticles as highly efficient catalysts for upgrading phenolic biomolecules. ACS Catal. 2015, 5, 2727–2734.

17

Cho, H. J.; Kim, D.; Li, J.; Su, D.; Xu, B. J. Zeolite-encapsulated Pt nanoparticles for tandem catalysis. J. Am. Chem. Soc. 2018, 140, 13514–13520.

18

Yang, X. L.; Liu, Q. G.; Zhang, Y. R.; Su, X.; Huang, Y. Q.; Zhang, T. In situ synthesis of metal clusters encapsulated within small-pore zeolites via a dry gel conversion method. Nanoscale 2018, 10, 11320–11327.

19

Wang, N.; Sun, Q. M.; Bai, R. S.; Li, X.; Guo, G. Q.; Yu, J. H. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 2016, 138, 7484–7487.

20

Xu, Z. K.; Yue, Y. Y.; Bao, X. J.; Xie, Z. L.; Zhu, H. B. Propane dehydrogenation over Pt clusters localized at the Sn single-site in zeolite framework. ACS Catal. 2020, 10, 818–828.

21

Cho, J.; Xu, L. L.; Jo, C.; Ryoo, R. Highly monodisperse supported metal nanoparticles by basic ammonium functionalization of mesopore walls for industrially relevant catalysis. Chem. Commun. 2017, 53, 3810–3813.

22

Goel, S.; Zones, S. I.; Iglesia, E. Encapsulation of metal clusters within MFI via interzeolite transformations and direct hydrothermal syntheses and catalytic consequences of their confinement. J. Am. Chem. Soc. 2014, 136, 15280–15290.

23

Zhang, J.; Wang, L.; Zhang, B. S.; Zhao, H. S.; Kolb, U.; Zhu, Y. H.; Liu, L. M.; Han, Y.; Wang, G. X.; Wang, C. T. et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat. Catal. 2018, 1, 540–546.

24

Wang, C. T.; Wang, L.; Zhang, J.; Wang, H.; Lewis, J. P.; Xiao, F. S. Product selectivity controlled by zeolite crystals in biomass hydrogenation over a palladium catalyst. J. Am. Chem. Soc. 2016, 138, 7880–7883.

25

Dai, C. Y.; Zhang, S. H.; Zhang, A. F.; Song, C. S.; Shi, C.; Guo, X. W. Hollow zeolite encapsulated Ni–Pt bimetals for sintering and coking resistant dry reforming of methane. J. Mater. Chem. A 2015, 3, 16461–16468.

26

Li, S. W.; Tuel, A.; Laprune, D.; Meunier, F.; Farrusseng, D. Transition-metal nanoparticles in hollow zeolite single crystals as bifunctional and size-selective hydrogenation catalysts. Chem. Mater. 2015, 27, 276–282.

27

Chen, Y.; Zhu, X. X.; Wang, X. P.; Su, Y. P. A reliable protocol for fast and facile constructing multi-hollow silicalite-1 and encapsulating metal nanoparticles within the hierarchical zeolite. Chem. Eng. J. 2021, 419, 129641.

28

Zhai, Y.; Zhang, X. B.; Wang, F. M.; Lv, G. J.; Jiang, T.; Wu, Y. Z.; Li, M. Y.; Li, M. Y.; Zhang, Q.; Liu, Y. K. Racing crystallization mechanism for economical design of single-crystal hollow ZSM-5 with the broken limit of Si/Al ratio and improved mass transfer. ACS Appl. Mater. Interfaces 2021, 13, 15246–15260.

29

Zhai, Y.; Zhang, X. B.; Wang, F. M.; Lv, G. J.; Li, H.; Jiang, T.; Wu, Y. Z.; Li, M. Y. One-step synthesis of high-amount Fe-doped hollow MFI zeolite by Kirkendall effect in the presence of organic acid anions. Micropor. Mesopor. Mater. 2020, 307, 110451.

30

Wu, Q. M.; Liu, X. L.; Zhu, L. F.; Ding, L. H.; Gao, P.; Wang, X.; Pan, S. X.; Bian, C. Q.; Meng, X. J.; Xu, J. et al. Solvent-free synthesis of zeolites from anhydrous starting raw solids. J. Am. Chem. Soc. 2015, 137, 1052–1055.

31

Zuo, Y.; Wang, X. S.; Guo, X. W. Synthesis of titanium silicalite-1 with small crystal size by using mother liquid of titanium silicalite-1 as seed. Ind. Eng. Chem. Res. 2011, 50, 8485–8491.

32

Pan, H. H.; Pan, Q. X.; Zhao, Y. S.; Luo, Y. B.; Shu, X. T.; He, M. Y. A green and efficient synthesis of ZSM-5 using NaY as seed with mother liquid recycling and in the absence of organic template. Ind. Eng. Chem. Res. 2010, 49, 7294–7302.

33

Zuo, Y.; Wang, X. S.; Guo, X. W. Synthesis of titanium silicalite-1 with small crystal size by using mother liquid of titanium silicalite-1 as seed. Ind. Eng. Chem. Res. 2011, 50, 8485–8491.

34

Liu, M.; Wei, H. J.; Li, B. J.; Song, L. Y.; Zhao, S. Z.; Niu, C. C.; Jia, C. F.; Wang, X. Y.; Wen, Y. Q. Green and efficient preparation of hollow titanium silicalite-1 by using recycled mother liquid. Chem. Eng. J. 2018, 331, 194–202.

35

Lv, G. J.; Deng, S. L.; Zhai, Y.; Zhu, Y. Q.; Li, H. C.; Wang, F. M.; Zhang, X. B. P123 lamellar micelle-assisted construction of hierarchical TS-1 stacked nanoplates with constrained mesopores for enhanced oxidative desulfurization. Appl. Catal. A: Gen. 2018, 567, 28–35.

36

Wang, J. Y.; Liu, P. S.; Boronat, M.; Ferri, P.; Xu, Z. G.; Liu, P.; Shen, B. J.; Wang, Z. D.; Yu, J. H. Organic-free synthesis of zeolite Y with high Si/Al ratios: Combined strategy of in situ hydroxyl radical assistance and post-synthesis treatment. Angew. Chem., Int. Ed. 2020, 59, 17225–17228.

37

Dai, C. Y.; Zhang, A. F.; Li, L. L.; Hou, K. K.; Ding, F. S.; Li, J.; Mu, D. Y.; Song, C. S.; Liu, M.; Guo, X. W. Synthesis of hollow nanocubes and macroporous monoliths of silicalite-1 by alkaline treatment. Chem. Mater. 2013, 25, 4197–4205.

38

Li, H.; Zhai, Y.; Zhang, X. B.; Lv, G. J.; Shen, Y.; Wang, X. Q.; Jiang, T.; Wu, Y. Z. Iron-containing TS-1 zeolites with controllable mesopores by desilication and their application in phenol hydroxylation. Ind. Eng. Chem. Res. 2020, 59, 10289–10297.

39

Kwok, K. M.; Ong, S. W. D.; Chen, L. W.; Zeng, H. C. Transformation of stöber silica spheres to hollow hierarchical single-crystal ZSM-5 zeolites with encapsulated metal nanocatalysts for selective catalysis. ACS Appl. Mater. Interfaces 2019, 11, 14774–14785.

40

Jiang, J. L.; Yang, Y.; Duanmu, C.; Xu, Y.; Feng, L. D.; Gu, X.; Chen, J. Preparation of hollow ZSM-5 crystals in the presence of polyacrylamide. Micropor. Mesopor. Mater. 2012, 163, 11–20.

41

Ma, Z.; Fu, T. J.; Wang, Y. J.; Shao, J.; Ma, Q.; Zhang, C. M.; Cui, L. P.; Li, Z. Silicalite-1 derivational desilication-recrystallization to prepare hollow nano-ZSM-5 and highly mesoporous micro-ZSM-5 catalyst for methanol to hydrocarbons. Ind. Eng. Chem. Res. 2019, 58, 2146–2158.

42

Chiesa, M.; Meynen, V.; Van Doorslaer, S.; Cool, P.; Vansant, E. F. Vanadium silicalite-1 nanoparticles deposition onto the mesoporous walls of SBA-15. Mechanistic insights from a combined EPR and Raman study. J. Am. Chem. Soc. 2006, 128, 8955–8963.

43

Wang, L.; Xu, Y.; Zhai, G. Z.; Zheng, Y. M.; Huang, J. L.; Sun, D. H.; Li, Q. B. Biophenol-mediated solvent-free synthesis of titanium silicalite-1 to improve the acidity character of framework Ti toward catalysis application. ACS Sustainable Chem. Eng. 2020, 8, 12177–12186.

44

Kalbasi, R. J.; Mazaheri, O. Facile one-pot tandem reductive amination of aldehydes from nitroarenes over a hierarchical ZSM-5 zeolite containing palladium nanoparticles. New J. Chem. 2016, 40, 9627–9637.

45

Zhou, Y. N.; Liu, H. Y.; Rao, X. R.; Yue, Y. Y.; Zhu, H. B.; Bao, X. J. Controlled synthesis of ZSM-5 zeolite with an unusual Al distribution in framework from natural aluminosilicate mineral. Micropor. Mesopor. Mater. 2020, 305, 110357.

Nano Research
Pages 4304-4313
Cite this article:
Zhai Y, Wang F, Zhang X, et al. Directional design and synthesis of high-yield hollow Fe-MFI zeolite encapsulating ultra-small Fe2O3 nanoparticles by using mother liquid. Nano Research, 2021, 14(11): 4304-4313. https://doi.org/10.1007/s12274-021-3747-7
Topics:

680

Views

21

Crossref

21

Web of Science

22

Scopus

4

CSCD

Altmetrics

Received: 09 May 2021
Revised: 03 July 2021
Accepted: 13 July 2021
Published: 31 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return