Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Carbon nanotube-silicon (CNT-Si) solar cells represent one of the alternative photovoltaic techniques with potential for low cost and high efficiency. Here, we report a method to improve solar cell performance by depositing conventional transitional metal oxides such as WO3 and establishing a collaborative system, in which CNTs are well-embedded within the WO3 layer and both of them are in close contact to Si substrate. This unique collaborative system optimizes the overall energy conversion process including the light absorption (antireflection by WO3), carrier separation (forming quasi p-n junction) and charge collection (CNT conductive network throughout the oxide layer). Combining with our previous TiO2-coating and HNO3-doping techniques, a solar cell efficiency of >18% at an active area of 0.09 cm 2 (air mass 1.5, 100 mW/cm2) was achieved. The oxide-enhanced CNT-Si solar cells which integrate the advantages of traditional semiconductors and novel nanostructures represent a promising route toward next-generation high-performance silicon-based photovoltaics.
Christians, J. A.; Schulz, P.; Tinkham, J. S.; Schloemer, T. H.; Harvey, S. P.; Tremolet de Villers, B. J.; Sellinger, A.; Berry, J. J.; Luther, J. M. Tailored interfaces of unencapsulated perovskite solar cells for >1, 000 hour operational stability. Nat. Energy 2018, 3, 68–74.
Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solventengineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.
Sargent, E. H. Colloidalquantum dot solar cells. Nat. Photonics 2012, 6, 133–135.
Selopal, G. S.; Zhao, H. G.; Wang, Z. M.; Rosei, F. Core/shell quantum dots solar cells. Adv. Funct. Mater. 2020, 30, 1908762.
Cui, Y.; Yao, H. F.; Gao, B. W.; Qin, Y. P.; Zhang, S. Q.; Yang, B.; He, C.; Xu, B. W.; Hou, J. H. Fine-tunedphotoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell. J. Am. Chem. Soc. 2017, 139, 7302–7309.
Yan, C. Q.; Barlow, S.; Wang, Z. H.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. W. Non-fullereneacceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 18003.
Kumari, T.; Myeon Lee, S.; Kang, S. H.; Chen, S. S.; Yang, C. Ternary solar cells with a mixed face-on and edge-on orientation enable an unprecedented efficiency of 12.1%. Energy Environ. Sci. 2017, 10, 258–265.
Ju, S.; Byun, M.; Kim, M.; Jun, J.; Huh, D.; Kim, D. S.; Jo, Y.; Lee, H. Fabrication of perovskite solar cell with high short-circuit current density (JSC) using moth-eye structure of SiOX. Nano Res. 2020, 13, 1156–1161.
Bouhjar, F.; Derbali, L.; Marí, B. High performance novel flexible perovskite solar cell based on a low-cost-processed ZnO: Co electron transport layer. Nano Res. 2020, 13, 2546–2555.
Wei, J.; Wang, X.; Sun, X. Y.; Yang, Z. F.; Moreels, I.; Xu, K.; Li, H. B. Polymerassisted deposition of high-quality CsPbI2Br film with enhanced film thickness and stability. Nano Res. 2020, 13, 684–690.
Tune, D. D.; Flavel, B. S.; Krupke, R.; Shapter, J. G. Carbon nanotube-silicon solar cells. Adv. Energy Mater. 2012, 2, 1043–1055.
Li, X. M.; Lv, Z.; Zhu, H. W. Carbon/silicon heterojunction solar cells: State of the art and prospects. Adv. Mater. 2015, 27, 6549–6574.
Huang, K.; Yu, X. G.; Cong, J. K.; Yang, D. R. Progress of graphene-silicon heterojunction photovoltaic devices. Adv. Mater. Interfaces 2018, 5, 1801520.
Wei, J. Q.; Jia, Y.; Shu, Q. K.; Gu, Z. Y.; Wang, K. L.; Zhuang, D. M.; Zhang, G.; Wang, Z. C.; Luo, J. B.; Cao, A. Double-walled carbon nanotube solar cells. Nano Lett. 2007, 7, 2317–2321.
Cui, K. H.; Anisimov, A. S.; Chiba, T.; Fujii, S.; Kataura, H.; Nasibulin, A. G.; Chiashi, S.; Kauppinen, E. I.; Maruyama, S. Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films. J. Mater. Chem. A 2014, 2, 11311–11318.
Wang, F. J.; Kozawa, D.; Miyauchi, Y.; Hiraoka, K.; Mouri, S.; Ohno, Y.; Matsuda, K. Fabrication of single-walled carbon nanotube/Si heterojunction solar cells with high photovoltaic performance. ACS Photonics 2014, 1, 360–364.
Jia, Y.; Cao, A. Y.; Bai, X.; Li, Z.; Zhang, L. H.; Guo, N.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H. Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett. 2011, 11, 1901–1905.
Cui, K. H.; Qian, Y.; Jeon, I.; Anisimov, A.; Matsuo, Y.; Kauppinen, E. I.; Maruyama, S. Scalable and solid-state redox functionalization of transparent single-walled carbon nanotube films for highly efficient and stable solar cells. Adv. Energy Mater. 2017, 7, 1700449.
Qian, Y.; Jeon, I.; Ho, Y. L.; Lee, C.; Jeong, S.; Delacou, C.; Seo, S.; Anisimov, A.; Kaupinnen, E. I.; Matsuo, Y. Multifunctional effect of p-doping, antireflection, and encapsulation by polymeric acid for high efficiency and stable carbon nanotube-based silicon solar cells. Adv. Energy Mater. 2020, 10, 1902389.
Shi, E. Z.; Zhang, L. H.; Li, Z.; Li, P. X.; Shang, Y. Y.; Jia, Y.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H. TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci. Rep. 2012, 2, 884.
Fan, Q. X.; Zhang, Q.; Zhou, W. B.; Xia, X. G.; Yang, F.; Zhang, N.; Xiao, S. Q.; Li, K. W.; Gu, X. G.; Xiao, Z. Novel approach to enhance efficiency of hybrid silicon-based solar cells via synergistic effects of polymer and carbon nanotube composite film. Nano Energy 2017, 33, 436–444.
Wang, F. J.; Kozawa, D.; Miyauchi, Y.; Hiraoka, K.; Mouri, S.; Ohno, Y.; Matsuda, K. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat. Commun. 2015, 6, 6305.
Tune, D. D.; Shirae, H.; Lami, V.; Headrick, R. J.; Pasquali, M.; Vaynzof, Y.; Noda, S.; Hobbie, E. K.; Flavel, B. S. Stability of chemically doped nanotube-silicon heterojunction solar cells: Role of oxides at the carbon-silicon interface. ACS Appl. Energy Mater. 2019, 2, 5925–5932.
Xie, R. B.; Ishijima, N.; Sugime, H.; Noda, S. Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process. Sci. Rep. 2019, 9, 12051.
Zhao, X. W.; Wu, H. S.; Yang, L. S.; Wu, Y. Z.; Sun, Y. P.; Shang, Y. Y.; Cao, A. Y. High efficiency CNT-Si heterojunction solar cells by dry gas doping. Carbon 2019, 147, 164–171.
Wu, H. S.; Zhao, X. W.; Sun, Y. P.; Yang, L. S.; Zou, M. C.; Zhang, H.; Wu, Y. Z.; Dai, L. X.; Shang, Y. Y.; Cao, A. Y. Improving carbon nanotube-silicon solar cells by solution processable metal chlorides. Solar RRL 2019, 3, 1900147.
Wu, H. S.; Zhao, X. W.; Wu, Y. Z.; Ji, Q. H.; Dai, L. X.; Shang, Y. Y.; Cao, A. Y. ImprovingCNT-Si solar cells by metal chloride-to-oxide transformation. Nano Res. 2020, 13, 543–550.
Chen, J. H.; Tune, D. D.; Ge, K. P.; Li, H.; Flavel, B. S. Front and back-junction carbon nanotube-silicon solar cells with an industrial architecture. Adv. Funct. Mater. 2020, 30, 2000484.
Tune, D. D.; Mallik, N.; Fornasier, H.; Flavel, B. S. Breakthrough carbon nanotube-silicon heterojunction solar cells. Adv. Energy Mater. 2020, 10, 1903261.
Li, R.; Di, J. T.; Yong, Z. Z.; Sun, B. Q.; Li, Q. W. Polymethylmethacrylate coating on aligned carbon nanotube-silicon solar cells for performance improvement. J. Mater. Chem. A 2014, 2, 4140–4143.
Shi, E. Z.; Li, H. B.; Xu, W. J.; Wu, S. T.; Wei, J. Q.; Fang, Y.; Cao, A. Y. Improvement of graphene-Si solar cells by embroidering graphene with a carbon nanotube spider-web. Nano Energy 2015, 17, 216–223.
Battaglia, C.; Yin, X. T.; Zheng, M.; Sharp, I. D.; Chen, T.; McDonnell, S.; Azcatl, A.; Carraro, C.; Ma, B. W.; Maboudian, R. Hole selective MoOx contact for silicon solar cells. Nano Lett. 2014, 14, 967–971.
Scirè, D.; Procel, P.; Gulino, A.; Isabella, O.; Zeman, M.; Crupi, I. Sub-gap defect density characterization of molybdenum oxide: An annealing study for solar cell applications. Nano Res. 2020, 13, 3416–3424.
Mu, X. H.; Yu, X. G.; Xu, D. K.; Shen, X. L.; Xia, Z. H.; He, H.; Zhu, H. Y.; Xie, J. S.; Sun, B. Q.; Yang, D. R. High efficiency organic/silicon hybrid solar cells with doping-free selective emitter structure induced by a WO3 thin interlayer. Nano Energy 2015, 16, 54–61.
Xu, D. K.; Yu, X. G.; Gao, D. C.; Li, C.; Zhong, M. Y.; Zhu, H. Y.; Yuan, S.; Lin, Z.; Yang, D. R. Self-generation of a Quasi p-n junction for high efficiency chemical-doping-free graphene/silicon solar cells using a transition metal oxide interlayer. J. Mater. Chem. A 2016, 4, 10558–10565.
Liu, P.; Sun, Q.; Zhu, F.; Liu, K.; Jiang, K. L.; Liu, L.; Li, Q. Q.; Fan, S. S. Measuring the work function of carbon nanotubes with thermionic method. Nano Lett. 2008, 8, 647–651.
Liu, Y. Q.; Zhang, Z. G.; Xia, Z. H.; Zhang, J.; Liu, Y.; Liang, F.; Li, Y. F.; Song, T.; Yu, X. G.; Lee, S. T. High performance nanostructured silicon-organic quasi p-n junction solar cells via low-temperature deposited hole and electron selective layer. ACS Nano 2016, 10, 704–712.