AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hydrogen-bonding regulated supramolecular chirality with controllable biostability

Jinying Liu1,2,§Yu Zhao3,§Changli Zhao1Xiaoqiu Dou1Xiaoyu Ma1Shaokang Guan3Yu Jia2,4( )Chuanliang Feng1( )
State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
International Laboratory for Quantum Functional Materials of Henan, and School of Physics, Zhengzhou University, Zhengzhou 450001, China

§Jinying Liu and Yu Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The regulation of natural helical nanostructures is principally supported and actuated by hydrogen bonds (H-bonds) formed from hydrogen-bonding groups (peptide bonds and base pairs) to realize biological activities and specific biofunctional transformations. However, studying the role of H-bonding patterns on the handedness of supramolecular assemblies is still challenging, since supramolecular assemblies will be disassembled or destabilized with slightly varying H-bonding groups for most supramolecules. To circumvent this issue, herein, two types of self-assembled C2-symmetric phenylalanine derivatives differed by a single H-bonding group (ester or amide) are systematically designed for deciphering the role of H-bonding pattern on the chirality of supramolecular assemblies and their related biostability. Opposite handedness nanofibrous structures with tailorable diameter and helical pitch are achieved with the transition from ester to amide groups in the gelators. Experimental and theoretical evidence suggests that helical orientation of ester-containing gelators ascribes to intermolecular H-bonds. In contrast, the helical direction for the amide-counterparts is mainly due to intra- and intermolecular H-bonds. Moreover, these H-bonding groups greatly influence their stability, as revealed by in vitro and in vivo degradation experiments and the left-handed assemblies are more stable than the right-handed ones. Thus, the study offers a feasible model to have valuable insight into understanding the role of H-bonding patterns in biological folding.

References

1

Rich, A.; Zhang, S. G. Z-DNA: The long road to biological function. Nat. Rev. Genet. 2003, 4, 566–572.

2

Dobson, C. M. Protein folding and misfolding. Nature 2003, 426, 884–890.

3

Wells, R. D. Non-B DNA conformations, mutagenesis and disease. Trends Biochem. Sci. 2007, 32, 271–278.

4

Chiti, F.; Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333–366.

5

Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Helical superstructures from charged poly(styrene)-poly(isocyanodipeptide) block copolymers. Science 1998, 280, 1427–1430.

6

Nakano, T.; Okamoto, Y. Synthetic helical polymers: Conformation and function. Chem. Rev. 2001, 101, 4013–4038.

7

O'Leary, L. E. R.; Fallas, J. A.; Bakota, E. L.; Kang, M. K.; Hartgerink, J. D. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat. Chem. 2011, 3, 821–828.

8

Mondal, S.; Adler-Abramovich, L.; Lampel, A.; Bram, Y.; Lipstman, S.; Gazit, E. Formation of functional super-helical assemblies by constrained single heptad repeat. Nat. Commun. 2015, 6, 8615.

9

Gao, P.; Zhan, C. L.; Liu, L. Z.; Zhou, Y. B.; Liu, M. H. Inter- and intra-molecular H-bonds induced different nanostructures from a multi-H-bonding (MHB) amphiphile: Nanofibers and nanodisks. Chem. Commun. 2004, 1174–1175.

10

Pedersen, S. W.; Pedersen, S. B.; Anker, L.; Hultqvist, G.; Kristensen, A. S.; Jemth, P.; Strømgaard, K. Probing backbone hydrogen bonding in PDZ/ligand interactions by protein amide-to-ester mutations. Nat. Commun. 2014, 5, 3215.

11

Ogi, S.; Matsumoto, K.; Yamaguchi, S. Seeded polymerization through the interplay of folding and aggregation of an amino-acid-based diamide. Angew. Chem., Int. Ed. 2018, 57, 2339–2343.

12

Minakawa, N.; Kojima, N.; Hikishima, S.; Sasaki, T.; Kiyosue, A.; Atsumi, N.; Ueno, Y.; Matsuda, A. New base pairing motifs. The synthesis and thermal stability of oligodeoxynucleotides containing imidazopyridopyrimidine nucleosides with the ability to form four hydrogen bonds. J. Am. Chem. Soc. 2003, 125, 9970–9982.

13

Deechongkit, S.; Nguyen, H.; Powers, E. T.; Dawson, P. E.; Gruebele, M.; Kelly, J. W. Context-dependent contributions of backbone hydrogen bonding to β-sheet folding energetics. Nature 2004, 430, 101–105.

14

Bolen, D. W.; Rose, G. D. Structure and energetics of the hydrogen-bonded backbone in protein folding. Annu. Rev. Biochem. 2008, 77, 339–362.

15

Sereikaitė, V.; Jensen, T. M. T.; Bartling, C. R. O.; Jemth, P.; Pless, S. A.; Strømgaard, K. Probing backbone hydrogen bonds in proteins by amide-to-ester mutations. ChemBioChem 2018, 19, 2136–2145.

16

Liu, M. H.; Zhang, L.; Wang, T. Y. Supramolecular chirality in self-assembled systems. Chem. Rev. 2015, 115, 7304–7397.

17

Yashima, E.; Ousaka, N.; Taura, D.; Shimomura, K.; Ikai, T.; Maeda, K. Supramolecular helical systems: Helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 2016, 116, 13752–13990.

18

Kulkarni, C.; Meijer, E. W.; Palmans, A. R. A. Cooperativity scale: A structure-mechanism correlation in the self-assembly of benzene-1, 3, 5-tricarboxamides. Acc. Chem. Res. 2017, 50, 1928–1936.

19

Dou, X. Q.; Mehwish, N.; Zhao, C. L.; Liu, J. Y.; Xing, C.; Feng, C. L. Supramolecular hydrogels with tunable chirality for promising biomedical applications. Acc. Chem. Res. 2020, 53, 852–862.

20

Liu, G. F.; Zhu, L. Y.; Ji, W.; Feng, C. L.; Wei, Z. X. Inversion of the supramolecular chirality of nanofibrous structures through Co-assembly with achiral molecules. Angew. Chem., Int. Ed. 2016, 55, 2411–2415.

21

Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science 1999, 284, 785–788.

22

Shen, Z. C.; Jiang, Y. Q.; Wang, T. Y.; Liu, M. H. Symmetry breaking in the supramolecular gels of an achiral gelator exclusively driven by π–π stacking. J. Am. Chem. Soc. 2015, 137, 16109–16115.

23

Hu, Y.; Lin, R.; Zhang, P. C.; Fern, J.; Cheetham, A. G.; Patel, K.; Schulman, R.; Kan, C. Y.; Cui, H. G. Electrostatic-driven lamination and untwisting of β-sheet assemblies. ACS Nano 2016, 10, 880–888.

24

Liu, G. F.; Zhang, D.; Feng, C. L. Control of three-dimensional cell adhesion by the chirality of nanofibers in hydrogels. Angew. Chem., Int. Ed. 2014, 53, 7789–7793.

25

Pashuck, E. T.; Stupp, S. I. Direct observation of morphological tranformation from twisted ribbons into helical ribbons. J. Am. Chem. Soc. 2010, 132, 8819–8821.

26

Cui, H. G.; Cheetham, A. G.; Pashuck, E. T.; Stupp, S. I. Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. J. Am. Chem. Soc. 2014, 136, 12461–12468.

27

Liu, G. F.; Li, X.; Sheng, J. H.; Li, P. Z.; Ong, W. K.; Phua, S. Z. F.; Ågren, H.; Zhu, L. L.; Zhao, Y. L. Helicity inversion of supramolecular hydrogels induced by achiral substituents. ACS Nano 2017, 11, 11880–11889.

28

Wang, M.; Zhou, P.; Wang, J. Q.; Zhao, Y. R.; Ma, H. C.; Lu, J. R.; Xu, H. Left or right: How does amino acid chirality affect the handedness of nanostructures self-assembled from short amphiphilic peptides? J. Am. Chem. Soc. 2017, 139, 4185–4194.

29

Liu, J. Y.; Yuan, F.; Ma, X. Y.; Auphedeous, D. I. Y.; Zhao, C. L.; Liu, C. T.; Shen, C. Y.; Feng, C. L. The cooperative effect of both molecular and supramolecular chirality on cell adhesion. Angew. Chem., Int. Ed. 2018, 57, 6475–6479.

30

Huang, Y. W.; Hu, J. C.; Kuang, W. F.; Wei, Z. X.; Faul, C. F. J. Modulating helicity through amphiphilicity-tuning supramolecular interactions for the controlled assembly of perylenes. Chem. Commun. 2011, 47, 5554–5556.

31

Zhao, D. P.; van Leeuwen, T.; Cheng, J. L.; Feringa, B. L. Dynamic control of chirality and self-assembly of double-stranded helicates with light. Nat. Chem. 2017, 9, 250–256.

32

Sun, J. S.; Li, Y. K.; Yan, F. S.; Liu, C.; Sang, Y. T.; Tian, F.; Feng, Q.; Duan, P. F.; Zhang, L.; Shi, X. H. et al. Control over the emerging chirality in supramolecular gels and solutions by chiral microvortices in milliseconds. Nat. Commun. 2018, 9, 2599.

33

Park, S. H.; Jung, S. H.; Ahn, J.; Lee, J. H.; Kwon, K. Y.; Jeon, J.; Kim, H.; Jaworski, J.; Jung, J. H. Reversibly tunable helix inversion in supramolecular gels trigged by Co2+. Chem. Commun. 2014, 50, 13495–13498.

34

Deng, M.; Zhang, L.; Jiang, Y. Q.; Liu, M. H. Role of achiral nucleobases in multicomponent chiral self-assembly: Purine-triggered helix and chirality transfer. Angew. Chem., Int. Ed. 2016, 55, 15062–15066.

35

Liu, G. F.; Liu, J. Y.; Feng, C. L.; Zhao, Y. L. Unexpected right-handed helical nanostructures co-assembled from L-phenylalanine derivatives and achiral bipyridines. Chem. Sci. 2017, 8, 1769–1775.

36

Choi, H.; Cho, K. J.; Seo, H.; Ahn, J.; Liu, J. Y.; Lee, S. S.; Kim, H.; Feng, C. L.; Jung, J. H. Transfer and dynamic inversion of coassembled supramolecular chirality through 2D-sheet to rolled-up tubular structure. J. Am. Chem. Soc. 2017, 139, 17711–17714.

37

Garzoni, M.; Baker, M. B.; Leenders, C. M. A.; Voets, I. K.; Albertazzi, L.; Palmans, A. R. A.; Meijer, E. W.; Pavan, G. M. Effect of H-bonding on order amplification in the growth of a supramolecular polymer in water. J. Am. Chem. Soc. 2016, 138, 13985–13995.

38

Bochicchio, D.; Pavan, G. M. From cooperative self-assembly to water-soluble supramolecular polymers using coarse-grained simulations. ACS Nano 2017, 11, 1000–1011.

39

Hirschberg, J. H. K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E. W. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 2000, 407, 167–170.

40

van Bommel, K. J. C.; van der Pol, C.; Muizebelt, I.; Friggeri, A.; Heeres, A.; Meetsma, A.; Feringa, B. L.; van Esch, J. Responsive cyclohexane-based low-molecular-weight hydrogelators with modular architecture. Angew. Chem., Int. Ed. 2004, 43, 1663–1667.

41

Buwalda, S. J.; Dijkstra, P. J.; Calucci, L.; Forte, C.; Feijen, J. Influence of amide versus ester linkages on the properties of eight-armed PEG-PLA star block copolymer hydrogels. Biomacromolecules 2010, 11, 224–232.

42

Sikder, A.; Das, A.; Ghosh, S. Hydrogen-bond-regulated distinct functional-group display at the inner and outer wall of vesicles. Angew. Chem., Int. Ed. 2015, 54, 6755–6760.

43

Ramin, M. A.; Latxague, L.; Sindhu, K. R.; Chassande, O.; Barthélémy, P. Low molecular weight hydrogels derived from urea based-bolaamphiphiles as new injectable biomaterials. Biomaterials 2017, 145, 72–80.

44

Basavalingappa, V.; Guterman, T.; Tang, Y. M.; Nir, S.; Lei, J. T.; Chakraborty, P.; Schnaider, L.; Reches, M.; Wei, G. H.; Gazit, E. Expanding the functional scope of the fmoc-diphenylalanine hydrogelator by introducing a rigidifying and chemically active urea backbone modification. Adv. Sci. 2019, 6, 1900218.

45

Klein, M. L.; Shinoda, W. Large-scale molecular dynamics simulations of self-assembling systems. Science 2008, 321, 798–800.

46

Torres, D. A.; Garzoni, M.; Subrahmanyam, A. V.; Pavan, G. M.; Thayumanavan, S. Protein-triggered supramolecular disassembly: Insights based on variations in ligand location in amphiphilic dendrons. J. Am. Chem. Soc. 2014, 136, 5385–5399.

47

Albuquerque, R. Q.; Timme, A.; Kress, R.; Senker, J.; Schmidt, H. W. Theoretical investigation of macrodipoles in supramolecular columnar stackings. Chem. –Eur. J. 2013, 19, 1647–1657.

48

Adhikari, B.; Singh, C.; Shah, A.; Lough, A. J.; Kraatz, H. B. Amino acid chirality and ferrocene conformation guided self-assembly and gelation of ferrocene-peptide conjugates. Chem. –Eur. J. 2015, 21, 11560–11572.

49

Rödle, A.; Ritschel, B.; Mück-Lichtenfeld, C.; Stepanenko, V.; Fernández, G. Influence of ester versus amide linkers on the supramolecular polymerization mechanisms of planar BODIPY dyes. Chem. –Eur. J. 2016, 22, 15772–15777.

50

Greciano, E. E.; Matarranz, B.; Sánchez, L. Pathway complexity versus hierarchical self-assembly in N-annulated perylenes: Structural effects in seeded supramolecular polymerization. Angew. Chem., Int. Ed. 2018, 57, 4697–4701.

51

Baker, M. B.; Albertazzi, L.; Voets, I. K.; Leenders, C. M. A.; Palmans, A. R. A.; Pavan, G. M.; Meijer, E. W. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer. Nat. Commun. 2015, 6, 6234.

52

Munkhbat, O.; Garzoni, M.; Raghupathi, K. R.; Pavan, G. M.; Thayumanavan, S. Role of aromatic interactions in temperature-sensitive amphiphilic supramolecular assemblies. Langmuir 2016, 32, 2874–2881.

53

Yang, C. H.; Chu, L. P.; Zhang, Y. M.; Shi, Y.; Liu, J. J.; Liu, Q.; Fan, S. J.; Yang, Z. M.; Ding, D.; Kong, D. L. et al. Dynamic biostability, biodistribution, and toxicity of L/D-peptide-based supramolecular nanofibers. ACS Appl. Mater. Interfaces 2015, 7, 2735–2744.

54

Chen, C. X.; Zhang, Y.; Hou, Z.; Cui, X. J.; Zhao, Y. R.; Xu, H. Rational design of short peptide-based hydrogels with MMP-2 responsiveness for controlled anticancer peptide delivery. Biomacromolecules 2017, 18, 3563–3571.

55

Lin, Y. A.; Ou, Y. C.; Cheetham, A. G.; Cui, H. G. Rational design of MMP degradable peptide-based supramolecular filaments. Biomacromolecules 2014, 15, 1419–1427.

56

Liang, G. L.; Yang, Z. M.; Zhang, R. J.; Li, L. H.; Fan, Y. J.; Kuang, Y.; Gao, Y.; Wang, T.; Lu, W. W.; Xu, B. Supramolecular hydrogel of a D-amino acid dipeptide for controlled drug release in vivo. Langmuir 2009, 25, 8419–8422.

57

Luo, Z. L.; Yue, Y. Y.; Zhang, Y. F.; Yuan, X.; Gong, J. P.; Wang, L. L.; He, B.; Liu, Z.; Sun, Y. L.; Liu, J. et al. Designer D-form self-assembling peptide nanofiber scaffolds for 3-dimensional cell cultures. Biomaterials 2013, 34, 4902–4913.

58

Ramin, M. A.; Sindhu, K. R.; Appavoo, A.; Oumzil, K.; Grinstaff, M. W.; Chassande, O.; Barthélémy, P. Cation tuning of supramolecular gel properties: A new paradigm for sustained drug delivery. Adv. Mater. 2017, 29, 1605227.

59

Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435–447.

60

Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Struct., Funct., Bioinform. 2010, 78, 1950–1958.

61

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

62

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

Nano Research
Pages 2226-2234
Cite this article:
Liu J, Zhao Y, Zhao C, et al. Hydrogen-bonding regulated supramolecular chirality with controllable biostability. Nano Research, 2022, 15(3): 2226-2234. https://doi.org/10.1007/s12274-021-3752-x
Topics:

807

Views

17

Crossref

13

Web of Science

15

Scopus

1

CSCD

Altmetrics

Received: 22 May 2021
Revised: 07 July 2021
Accepted: 16 July 2021
Published: 28 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return