Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article

Single site catalyst with enzyme-mimic micro-environment for electroreduction of CO2

Chang Long1,2,§Kaiwei Wan2,3,§Xueying Qiu1,2Xiaofei Zhang1,2Jianyu Han2,3Pengfei An3,4Zhongjie Yang2,3Xiang Li2,3Jun Guo2,3Xinghua Shi2,3Hui Wang2,3Zhiyong Tang2,3Shaoqin Liu1()
School of Materials Science and Engineering, MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing, Harbin Institute of Technology, Harbin150080, China
CAS key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
University of Chinese Academy of Sciences, Beijing100049, China
Institute of High Energy Physics CAS, Beijing100049, China

§ Chang Long and Kaiwei Wan contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Single site catalysts provide a unique platform for mimicking natural enzyme due to their tunable interaction between metal center and coordinated ligand. However, most works have focused on preparing structural and functional models of nature enzyme, with less reports also taking the local chemical environment, i.e., functional/catalytic residues around the active site which is an essential feature of enzymes, into consideration. Herein, we report a Co-centered porphyrinic polymer containing the enzyme-mimic micro-environment, where the linker triazole over CoN4 site enables formation of hydrogen bond with the *COOH intermediate, thus promoting the electrocatalytic reduction of CO2. As-prepared catalyst achieves the CO2-to-CO conversion of 5, 788 h−1 turnover frequency value and near unit (~ 96%) faradaic efficiency at −0.61 V versus reversible hydrogen electrode. This strategy will bring new dimension of designing highly active single-site catalysts.

References

1

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

2

Fu, J. L.; Yang, Y. R.; Johnson-Buck, A.; Liu, M. H.; Liu, Y.; Walter, N. G.; Woodbury, N. W.; Yan H. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat. Nanotech. 2014, 9, 531–536.

3

Lin, Y. H.; Ren, J. S.; Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097–1105.

4

Corbin, N.; Zeng, J.; Williams, K.; Manthiram, K. Heterogeneous molecular catalysts for electrocatalytic CO2 reduction. Nano Res. 2019, 12, 2093–2125.

5

Raynal, M.; Ballester, P.; Vidal-Ferran, A.; Van Leeuwen, P. W. N. M. Supramolecular catalysis. Part 2: Artificial enzyme mimics. Chem. Soc. Rev. 2014, 43, 1734–1787.

6

Rogge, S. M. J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A. I.; Sepúlveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F. et al. Metal-organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 2017, 46, 3134–3184.

7

Qin, R. X.; Liu, P. X.; Fu, G.; Zheng N. F. Strategies for stabilizing atomically dispersed metal catalysts. Small Methods 2018, 2, 1700286.

8

Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

9

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

10

Hou, Y.; Qiu, M.; Kim, M. G.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X. D.; Yang, B.; Cho, J.; Chen, M. W. et al. Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.

11

Wu, K. L.; Chen, X.; Liu, S. J.; Pan, Y.; Cheong, W. C.; Zhu, W.; Cao, X.; Shen, R. A.; Chen, W. X.; Luo, J. et al. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 2018, 11, 6260–6269.

12

Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co–N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

13

Han, J. Y.; An, P. F.; Liu, S. H.; Zhang, X. F.; Wang, D. W.; Yuan, Y.; Guo, J.; Qiu, X. Y.; Hou, K.; Shi, L. et al. Reordering d orbital energies of single-site catalysts for CO2 electroreduction. Angew. Chem., Int. Ed. 2019, 58, 12711–12716.

14

Li, F.; Bu, Y. F.; Han, G. F.; Noh, H. J.; Kim, S. J.; Ahmad, I.; Lu, Y. L.; Zhang, P.; Jeong, H. Y.; Fu, Z. P. et al. Identifying the structure of Zn-N2 active sites and structural activation. Nat. Commun. 2019, 10, 2623.

15

Pan, Y.; Chen, Y. J.; Wu, K. L.; Chen, Z.; Liu, S. J.; Cao, X.; Cheong, W. C.; Meng, T.; Luo, J.; Zheng, L. R. et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun. 2019, 10, 4290.

16

Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.

17

Han, N.; Wang, Y.; Ma, L.; Wen, J. G.; Li, J.; Zheng, H. C.; Nie, K. Q.; Wang, X. X.; Zhao, F. P.; Li, Y. F. et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem 2017, 3, 652–664.

18

Hu, X. M.; Rønne, M. H.; Pedersen, S. U.; Skrydstrup, T.; Daasbjerg, K. Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem., Int. Ed. 2017, 56, 6468–6472.

19

Wang, Y. F.; Chen, Z.; Han, P.; Du, Y. H.; Gu, Z. X.; Xu, X.; Zheng G. F. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 2018, 8, 7113–7119.

20

Warshel, A.; Sharma, P. K.; Kato, M.; Xiang, Y.; Liu, H. B.; Olsson, M. H. M. Electrostatic basis for enzyme catalysis. Chem. Rev. 2006, 106, 3210–3235.

21
McMurry, J.; Begley, T. P. The Organic Chemistry of Biological Pathways; Roberts and Company Publishers: Englewood, 2005.
22

Menger, F. M. Enzyme reactivity from an organic perspective. Acc. Chem. Res. 1993, 26, 206–212.

23

Zhang, X. Y.; Houk K. N. Why enzymes are proficient catalysts: Beyond the Pauling paradigm. Acc. Chem. Res. 2005, 38, 379–385.

24

Ménard, R.; Storer, A. C. Oxyanion hole interactions in serine and cysteine proteases. Biol. Chem. Hoppe. Seyler. 1992, 373, 393–400.

25

Li, H. B.; Xiao, J. P.; Fu, Q.; Bao, X. H. Confined catalysis under two-dimensional materials. Proc. Natl. Acad. Sci. USA 2017, 114, 5930–5934.

26

Tomas, J. M.; Williams, R. J. P. Catalysis: Principles, progress, prospects. Philos. Trans. Roy. Soc. A 2005, 363, 765–791.

27

Riscoe, A. R.; Wrasman, C. J.; Herzing, A. A.; Hoffman, A. S.; Menon, A.; Boubnov, A.; Vargas, M.; Bare, S. R.; Cargnello, M. Transition state and product diffusion control by polymer–nanocrystal hybrid catalysts. Nat. Catal. 2019, 2, 852–863.

28

Nothling, M. D.; Xiao, Z. Y.; Hill, N. S.; Blyth, M. T.; Bhaskaran, A.; Sani, M. A.; Espinosa-Gomez, A.; Ngov, K.; White, J.; Buscher, T. et al. A multifunctional surfactant catalyst inspired by hydrolases. Sci. Adv. 2020, 6, eaaz0404.

29

Carlsson, G. H.; Nicholls, P.; Svistunenko, D.; Berglund, G. I.; Hajdu, J. Complexes of horseradish peroxidase with formate, acetate, and carbon monoxide. Biochemistry 2005, 44, 635–642.

30

Jeoung, J. H.; Dobbek, H. Carbon dioxide activation at the Ni, Fe-cluster of anaerobic carbon monoxide dehydrogenase. Science 2007, 318, 1461–1464.

31

Li, L. Y.; Zhao, H. X.; Wang, J. Y.; Wang, R. H. Facile fabrication of ultrafine palladium nanoparticles with size-and location-control in click-based porous organic polymers. ACS Nano 2014, 8, 5352–5364.

32

Lian, W. H.; Sun, Y. Y.; Wang, B. B.; Shan, N.; Shi, T. S. Synthesis and properties of 5, 10, 15, 20-tetra [4-(3, 5-dioctoxybenzamidephenyl] porphyrin and its metal complexes. J. Serbian Chem. Soc. 2012, 77, 335–348.

33

Demir, K. D.; Kiskan, B.; Yagci, Y. Thermally curable acetylene-containing main-chain benzoxazine polymers via sonogashira coupling reaction. Macromolecules 2011, 44, 1801–1807.

34

Xiang, Z. H.; Xue, Y. H.; Cao, D. P.; Huang, L.; Chen, J. F.; Dai, L. M. Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angew. Chem., Int. Ed. 2014, 53, 2433–2437.

35

Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O. M. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2reduction in water. Science 2015, 349, 1208–1213.

36

Barkigia, K. M.; Renner, M. W.; Furenlid, L. R.; Medforth, C. J.; Smith, K. M.; Fajer, J. Crystallographic and EXAFS studies of conformationally designed nonplanar nickel (II) porphyrins. J. Am. Chem. Soc. 1993, 115, 3627–3635.

37

Halder, A.; Kandambeth, S.; Biswal, B. P.; Kaur, G.; Roy, N. C.; Addicoat, M.; Salunke, J. K.; Banerjee, S.; Vanka, K.; Heine, T. et al. Decoding the morphological diversity in two dimensional crystalline porous polymers by core planarity modulation. Angew. Chem., Int. Ed. 2016, 55, 7806–7810.

38

Wang, Y. R.; Huang, Q.; He, C. T.; Chen, Y. F.; Liu, J.; Shen, F. C.; Lan, Y. Q. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat. Commun. 2018, 9, 4466.

39

Maurin, A.; Robert, M. Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective, efficient CO2-to-CO conversion in water. J. Am. Chem. Soc. 2016, 138, 2492–2495.

40

Hsieh, Y. C.; Senanayake, S. D.; Zhang, Y.; Xu, W. Q.; Polyansky, D. E. Effect of chloride anions on the synthesis and enhanced catalytic activity of silver nanocoral electrodes for CO2 electroreduction. ACS Catal. 2015, 5, 5349–5356.

41

Huang, H. W.; Jia, H. H.; Liu, Z.; Gao, P. F.; Zhao, J. T.; Luo, Z. L.; Yang, J. L.; Zeng, J. Understanding of strain effects in the electrochemical reduction of CO2: Using Pd nanostructures as an ideal platform. Angew. Chem., Int. Ed. 2017, 56, 3594–3598.

42

Kornienko, N.; Zhao, Y. B.; Kley, C. S.; Zhu, C. H.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. D. Metal–organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 2015, 137, 14129–14135.

43

Shen, J.; Kortlever, R.; Kas, R.; Birdja, Y. Y.; Diaz-Morales, O.; Kwon, Y.; Ledezma-Yanez, I.; Schouten, K. J. P.; Mul, G.; Koper, M. T. M. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat. Commun. 2015, 6, 8177.

44

Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

Nano Research
Pages 1817-1823
Cite this article:
Long C, Wan K, Qiu X, et al. Single site catalyst with enzyme-mimic micro-environment for electroreduction of CO2. Nano Research, 2022, 15(3): 1817-1823. https://doi.org/10.1007/s12274-021-3756-6
Topics:
Metrics & Citations  
Article History
Copyright
Return