AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

BSA stabilized photothermal-fenton reactor with cisplatin for chemo/chemodynamic cascade oncotherapy

Nan Yang1Tian Zhang1Changyu Cao1Genxiang Mao3Jinjun Shao1Xuejiao Song1( )Wenjun Wang2Xiaozhou Mou3,4( )Xiaochen Dong1( )
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310013, China
Clinical Research Institute, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
Show Author Information

Graphical Abstract

Abstract

Cisplatin (CDDP)-based chemotherapy is substantially limited in the clinic due to its high postoperative recurrence rate. Synergy therapy has been proven as a potent approach to minimize recurrence and achieve enhanced treatment effects. Herein, chemotherapy drug CDDP is assembled with the photothermal-Fenton agent of bovine serum albumin (BSA) stabilized gallic acid-functionalized iron nanoparticles (GA-Fe NPs) to achieve chemo/chemodynamic synergistic cascade oncotherapy. The Pt-GA-Fe NPs can be utilized to generate H2O2 via the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) in the tumor microenvironment (TME), which would then greatly boost H2O2-depending chemodynamic therapy (CDT). The generated cytotoxic reactive oxygen species (hydroxyl radicals, ·OH) and the depletion of glutathione (GSH) would further promote CDDP-induced DNA damage. Moreover, benefiting from the absorption in the near-infrared (NIR) region, Pt-GA-Fe NPs exhibit excellent photothermal conversion efficiency (η = 45.5%) and allow photoacoustic imaging (PAI) guided photothermal therapy (PTT). In vitro and in vivo experiments show that synergy therapy can effectively kill cancer cells and successfully cure cancer without systemic toxicity. The work highlights a new type of therapeutic agent based on CDDP with the ability of H2O2 self-generation, thermal responsiveness, and enhanced CDT effects for applications in cancer therapy.

References

1

Liu, Z. P.; Xie, Y.; Xiong, Y.; Liu, S. L.; Qiu, C.; Zhu, Z. H.; Mao, H.; Yu, M.; Wang, X. Y. TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages. Cancer Lett. 2020, 469, 173–185.

2

Yang, C. X.; Xing, L.; Chang, X.; Zhou, T. J.; Bi, Y. Y.; Yu, Z. Q.; Zhang, Z. Q.; Jiang, H. L. Synergistic platinum (II) prodrug nanoparticles for enhanced breast cancer therapy. Mol. Pharmaceutics 2020, 17, 1300–1309.

3

Lin, Y. X.; Wang, Y.; An, H. W.; Qi, B. W.; Wang, J. Q.; Wang, L.; Shi, J. J.; Mei, L.; Wang, H. Peptide-based autophagic gene and cisplatin co-delivery systems enable improved chemotherapy resistance. Nano Lett. 2019, 19, 2968–2978.

4

Burger, H.; Loos, W. J.; Eechoute, K.; Verweij, J.; Mathijssen, R. H. J.; Wiemer, E. A. C. Drug transporters of platinum-based anticancer agents and their clinical significance. Drug Resist. Updat. 2011, 14, 22–34.

5

Ling, X.; Tu, J. S.; Wang, J. Q.; Shajii, A.; Kong, N.; Feng, C.; Zhang, Y.; Yu, M.; Xie, T.; Bharwani, Z. et al. Glutathione-responsive prodrug nanoparticles for effective drug delivery and cancer therapy. ACS Nano 2019, 13, 357–370.

6

Qiao, Y. T.; Wan, J. Q.; Zhou, L. Q.; Ma, W.; Yang, Y. Y.; Luo, W. X.; Yu, Z. Q.; Wang, H. X. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11, e1527.

7

Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D. et al. Photodynamic therapy of cancer: An update. CA:Cancer J. Clin. 2011, 61, 250–281.

8

Wang, Z. Z.; Zhang, Y.; Ju, E. G.; Liu, Z.; Cao, F. F.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 2018, 9, 3334.

9

Son, S.; Kim, J. H.; Wang, X. W.; Zhang, C. L.; Yoon, S. A.; Shin, J.; Sharma, A.; Lee, M. H.; Cheng, L.; Wu, J. S. et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. 2020, 49, 3244–3261.

10

Ranji-Burachaloo, H.; Reyhani, A.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G. Combined Fenton and starvation therapies using hemoglobin and glucose oxidase. Nanoscale 2019, 11, 5705–5716.

11

Cheng, Q.; Yu, W. Y.; Ye, J. J.; Liu, M. D.; Liu, W. L.; Zhang, C.; Zhang, C.; Feng, J.; Zhang, X. Z. Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy. Biomaterials 2019, 224, 119500.

12

Yu, M.; Duan, X. H.; Cai, Y. J.; Zhang, F.; Jiang, S. Q.; Han, S. S.; Shen, J.; Shuai, X. T. Multifunctional nanoregulator reshapes immune microenvironment and enhances immune memory for tumor immunotherapy. Adv. Sci. 2019, 6, 1900037.

13

Gajewski, T. F.; Schreiber, H.; Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 2013, 14, 1014–1022.

14

Zhang, L. L.; Liang, D. W.; Wang, Y.; Li, D.; Zhang, J. H.; Wu, L.; Feng, M. K.; Yi, F.; Xu, L. Z.; Lei, L. D. et al. Caged circular SiRNAs for photomodulation of gene expression in cells and mice. Chem. Sci. 2018, 9, 44–51.

15

Zhu, J. W.; Wang, W. L.; Wang, X. R.; Zhong, L. P.; Song, X. J.; Wang, W. J.; Zhao, Y. X.; Dong, X. C. Multishell nanoparticles with "linkage mechanism" for thermal responsive photodynamic and gas synergistic therapy. Adv. Healthc. Mater. 2021, 10, 2002038.

16

Han, R. C.; Zhao, M.; Wang, Z. W.; Liu, H. L.; Zhu, S. C.; Huang, L.; Wang, Y.; Wang, L. J.; Hong, Y. K.; Sha, Y. L. et al. Super-efficient in vivo two-photon photodynamic therapy with a gold nanocluster as a type I photosensitizer. ACS Nano 2020, 14, 9532–9544.

17

Huang, X. Y.; Gu, R.; Li, J. W.; Yang, N.; Cheng, Z. J.; Si, W. L.; Chen, P.; Huang, W.; Dong, X. C. Diketopyrrolopyrrole-Au (I) as singlet oxygen generator for enhanced tumor photodynamic and photothermal therapy. Sci. China Chem. 2020, 63, 55–64.

18

Zhang, M.; Song, R. X.; Liu, Y. Y.; Yi, Z. G.; Meng, X. F.; Zhang, J. W.; Tang, Z. M.; Yao, Z. W.; Liu, Y.; Liu, X. G. et al. Calcium-overload-mediated tumor therapy by calcium peroxide nanoparticles. Chem 2019, 5, 2171–2182.

19

Lin, L. S.; Huang, T.; Song, J. B.; Ou, X. Y.; Wang, Z. T.; Deng, H. Z.; Tian, R.; Liu, Y. J.; Wang, J. F.; Liu, Y. et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 9937–9945.

20

Yang, N.; Xiao, W. Y.; Song, X. J.; Wang, W. J.; Dong, X. C. Recent advances in tumor microenvironment hydrogen peroxide-responsive materials for cancer photodynamic therapy. Nano-Micro Lett. 2020, 12, 15.

21

Cao, C. Y.; Yang, N.; Dai, H. M.; Huang, H.; Song, X. J.; Zhang, Q.; Dong, X. C. Recent advances in phase change material based nanoplatforms for cancer therapy. Nanoscale Adv. 2021, 3, 106–122.

22

Cao, C. Y.; Ge, W.; Yin, J. J.; Yang, D. L.; Wang, W. J.; Song, X. J.; Hu, Y. L.; Yin, J.; Dong, X. C. Mesoporous silica supported silver–bismuth nanoparticles as photothermal agents for skin infection synergistic antibacterial therapy. Small 2020, 16, 2000436.

23

Ranji-Burachaloo, H.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G. Cancer treatment through nanoparticle-facilitated Fenton reaction. ACS Nano 2018, 12, 11819–11837.

24

Ma, P. A.; Xiao, H. H.; Yu, C.; Liu, J. H.; Cheng, Z. Y.; Song, H. Q.; Zhang, X. Y.; Li, C. X.; Wang, J. Q.; Gu, Z. et al. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett. 2017, 17, 928–937.

25

Liu, Y.; Zhen, W. Y.; Jin, L. G.; Zhang, S. T.; Sun, G. Y.; Zhang, T. Q.; Xu, X.; Song, S. Y.; Wang, Y. H.; Liu, J. H. et al. All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication. ACS Nano 2018, 12, 4886–4893.

26

Zou, J. H.; Xue, L.; Yang, N.; Ren, Y. F.; Fan, Z.; Wang, W. J.; Si, W. L.; Zhang, Y. W.; Huang, W.; Dong, X. C. A glutathione responsive pyrrolopyrrolidone nanotheranostic agent for turn-on fluorescence imaging guided photothermal/photodynamic cancer therapy. Mater. Chem. Front. 2019, 3, 2143–2150.

27

Yamakoshi, Y.; Umezawa, N.; Ryu, A.; Arakane, K.; Miyata, N.; Goda, Y.; Masumizu, T.; Nagano, T. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines:   O2· versus 1O2. J. Am. Chem. Soc. 2003, 125, 12803–12809.

28

Zhang, J. H.; Li, H. C.; Wu, Q. P.; Chen, Y. M.; Deng, Y. C.; Yang, Z. C.; Zhang, L. Y.; Liu, B. Tumoral NOX4 recruits M2 tumor-associated macrophages via ROS/PI3K signaling-dependent various cytokine production to promote NSCLC growth. Redox Biol. 2019, 22, 101116.

29

Skonieczna, M.; Hejmo, T.; Poterala-Hejmo, A.; Cieslar-Pobuda, A.; Buldak, R. J. NADPH oxidases: Insights into selected functions and mechanisms of action in cancer and stem cells. Oxid. Med. Cell. Longev. 2017, 2017, 9420539.

30

Dixon, S. J.; Stockwell, B. R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 2014, 10, 9–17.

31

Luna-Vargas, M. P. A.; Chipuk, J. E. The deadly landscape of pro-apoptotic BCL-2 proteins in the outer mitochondrial membrane. FEBS J. 2016, 283, 2676–2689.

32

Circu, M. L.; Aw, T. Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 2010, 48, 749–762.

33

Jin, Q. T.; Zhu, W. J.; Jiang, D. W.; Zhang, R.; Kutyreff, C. J.; Engle, J. W.; Huang, P.; Cai, W. B.; Liu, Z.; Cheng, L. Ultra-small iron-gallic acid coordination polymer nanoparticles for chelator-free labeling of 64Cu and multimodal imaging-guided photothermal therapy. Nanoscale 2017, 9, 12609–12617.

Nano Research
Pages 2235-2243
Cite this article:
Yang N, Zhang T, Cao C, et al. BSA stabilized photothermal-fenton reactor with cisplatin for chemo/chemodynamic cascade oncotherapy. Nano Research, 2022, 15(3): 2235-2243. https://doi.org/10.1007/s12274-021-3758-4
Topics:

886

Views

15

Crossref

20

Web of Science

19

Scopus

4

CSCD

Altmetrics

Received: 01 June 2021
Revised: 12 July 2021
Accepted: 18 July 2021
Published: 31 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return