AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Necroptosis-elicited host immunity: GOx-loaded MoS2 nanocatalysts for self-amplified chemodynamic immunotherapy

Wensheng Xie1,2,Jingsong Lu2,3Zhenhu Guo2,4Xiaoxiao Guo2Yongjiu Chi2Jieling Ye2Junxin Zhang2Wanling Xu2Lingyun Zhao2( )Yen Wei1( )
The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
State Key Laboratory of Powder Metallurgy, Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
Present address: Department of Chemistry, Tsinghua University, Beijing 100084, China.
Show Author Information

Graphical Abstract

Abstract

Nanoparticles induced potent antitumor immunotherapy plays a significant role for enhancing conventional therapeutic effectiveness. However, revealing the pathway of how nanoagents themselves trigger the host immunity or how to maximize the immunotherapy efficacy still needs further exploration. Herein, rose-like MoS2 nanoflowers modified with 2-deoxy-D-glucose (2-DG) and glucose oxidase (GOx) (MPGGFs) have been successfully fabricated via a one-pot hydrothermal reaction and following one-by-one surface modification as a multifunctional nanocatalyst for photothermal therapy enhanced self-amplified chemodynamic immunotherapy (PTT-co-CDT). By introducing GOx, the obtained MPGGFs exhibited self-amplified chemodynamic therapeutic efficacy under hypoxia tumor microenvironment (TME) because of the raised intracellular H2O2 level via enzyme-catalysis of oxygen. Furthermore, combined with the intrinsic excellent photothermal conversion efficiency of MoS2 nanoflowers, PTT-co-CDT performances by MPGGFs could effectively induce the necroptosis of tumor cells both in vitro and in vivo. Then the induced necroptosis via PTT-co-CDT by MPGGFs could directly trigger host immunity by activating the antigen-specific T-cells (CD4+ and CD8+). Finally, the excellent in vivo safety of MPGGFs makes us believe that the successful construction of rose-like multifunctional nanocatalyst not only has great potentials for self-amplified chemodynamic immunotherapy, but also provides a paradigm for exploring necroptosis triggered host immunity for cancer treatment.

References

1

Du, W.; Mohammadpour, H.; O’Neill, R. E.; Kumar, S.; Chen, C.; Qiu, M.; Mei, L.; Qiu, J. X.; McCarthy, P. L.; Lee, K. P. et al. Serine protease inhibitor 6 protects alloreactive T cells from granzyme B-mediated mitochondrial damage without affecting graft-versus-tumor effect. OncoImmunology 2018, 7, e1397247.

2

Waldman, A. D.; Fritz, J. M.; Lenardo, M. J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668.

3

Irvine, D. J.; Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 2020, 20, 321–334.

4

Smyth, M. J.; Ngiow, S. F.; Ribas, A.; Teng, M. W. L. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 2016, 13, 143–158.

5

Wang, Z. Y.; Li, Z. Y.; Sun, Z. L.; Wang, S. R.; Ali, Z.; Zhu, S. H.; Liu, S.; Ren, Q. S.; Sheng, F. G.; Wang, B. D. et al. Visualization nanozyme based on tumor microenvironment “unlocking” for intensive combination therapy of breast cancer. Sci. Adv. 2020, 6, eabc8733.

6

Shao, K.; Singha, S.; Clemente-Casares, X.; Tsai, S.; Yang, Y.; Santamaria, P. Nanoparticle-based immunotherapy for cancer. ACS Nano 2015, 9, 16–30.

7

Dewitte, H.; Verbeke, R.; Breckpot, K.; De Smedt, S. C.; Lentacker, I. Nanoparticle design to induce tumor immunity and challenge the suppressive tumor microenvironment. Nano Today 2014, 9, 743–758.

8

Chen, Q.; Xu, L. G.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 2016, 7, 13193.

9

Chang, M. Y.; Wang, M.; Wang, M. F.; Shu, M. M.; Ding, B. B.; Li, C. X.; Pang, M. L.; Cui, S. Z.; Hou, Z. Y.; Lin, J. A multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy. Adv. Mater. 2019, 31, e1905271.

10

Ye, X. Y.; Liang, X.; Chen, Q.; Miao, Q. W.; Chen, X. L.; Zhang, X. D.; Mei, L. Surgical tumor-derived personalized photothermal vaccine formulation for cancer immunotherapy. ACS Nano 2019, 13, 2956–2968.

11

Jiang, F.; Ding, B. B.; Liang, S.; Zhao, Y. J.; Cheng, Z. Y.; Xing, B. G.; Ma, P. A.; Lin, J. Intelligent MoS2-CuO heterostructures with multiplexed imaging and remarkably enhanced antitumor efficacy via synergetic photothermal therapy/chemodynamic therapy/immunotherapy. Biomaterials 2021, 268, 120545.

12

Eggermont, A. M. M. Therapeutic vaccines in solid tumours: Can they be harmful? Eur. J. Cancer 2009, 45, 2087–2090.

13

O’Donnell, J. S.; Teng, M. W. L.; Smyth, M. J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 2019, 16, 151–167.

14

Skoulidis, F.; Goldberg, M. E.; Greenawalt, D. M.; Hellmann, M. D.; Awad, M. M.; Gainor, J. F.; Schrock, A. B.; Hartmaier, R. J.; Trabucco, S. E.; Gay, L. et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 2018, 8, 822–835.

15

Korangath, P.; Barnett, J. D.; Sharma, A.; Henderson, E. T.; Stewart, J.; Yu, S. H.; Kandala, S. K.; Yang, C. T.; Caserto, J. S.; Hedayati, M. et al. Nanoparticle interactions with immune cells dominate tumor retention and induce T cell-mediated tumor suppression in models of breast cancer. Sci. Adv. 2020, 6, eaay1601.

16

Deng, R. H.; Zou, M. Z.; Zheng, D. W.; Peng, S. Y.; Liu, W. L.; Bai, X. F.; Chen, H. S.; Sun, Y. X.; Zhou, P. H.; Zhang, X. Z. Nanoparticles from cuttlefish ink inhibit tumor growth by synergizing immunotherapy and photothermal therapy. ACS Nano 2019, 13, 8618–8629.

17

Casares, N.; Pequignot, M. O.; Tesniere, A.; Ghiringhelli, F.; Roux, S.; Chaput, N.; Schmitt, E.; Hamai, A.; Hervas-Stubbs, S.; Obeid, M. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 2005, 202, 1691–1701.

18

Souers, A. J.; Leverson, J. D.; Boghaert, E. R.; Ackler, S. L.; Catron, N. D.; Chen, J.; Dayton, B. D.; Ding, H.; Enschede, S. H.; Fairbrother, W. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 2013, 19, 202–208.

19

Yatim, N.; Cullen, S.; Albert, M. L. Dying cells actively regulate adaptive immune responses. Nat. Rev. Immunol. 2017, 17, 262–275.

20

Snyder, A. G.; Hubbard, N. W.; Messmer, M. N.; Kofman, S. B.; Hagan, C. E.; Orozco, S. L.; Chiang, K.; Daniels, B. P.; Baker, D.; Oberst, A. Intratumoral activation of the necroptotic pathway components RIPK1 and RIPK3 potentiates antitumor immunity. Sci. Immunol. 2019, 4, eaaw2004.

21

Grootjans, S.; Vanden, Berghe T.; Vandenabeele, P. Initiation and execution mechanisms of necroptosis: An overview. Cell Death Differ. 2017, 24, 1184–1195.

22

Wang, F. Z.; Zheng, M. J.; Zhang, B.; Zhu, C. Q.; Li, Q.; Ma, L.; Shen, W. Z. Ammonia intercalated flower-like MoS2 nanosheet film as electrocatalyst for high efficient and stable hydrogen evolution. Sci. Rep. 2016, 6, 31092.

23

Feng, G. B.; Wei, A. X.; Zhao, Y.; Liu, J. Synthesis of flower-like MoS2 nanosheets microspheres by hydrothermal method. J. Mater. Sci. Mater. Electron. 2015, 26, 8160–8166.

24

He, C. B.; Duan, X. P.; Guo, N. N.; Chan, C.; Poon, C.; Weichselbaum, R. R.; Lin, W. B. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat. Commun. 2016, 7, 12499.

25

Yu, J.; Ma, D. Q.; Mei, L. Q.; Gao, Q.; Yin, W. Y.; Zhang, X.; Yan, L.; Gu, Z. J.; Ma, X. Y.; Zhao, Y. L. Peroxidase-like activity of MoS2 nanoflakes with different modifications and their application for H2O2 and glucose detection. J. Mater. Chem. B 2018, 6, 487–498.

26

Xie, W. S.; Guo, Z. H.; Zhao, L. Y.; Wei, Y. Metal-phenolic networks: Facile assembled complexes for cancer theranostics. Theranostics 2021, 11, 6407–6426.

27

Xie, W. S.; Guo, Z. H.; Cao, Z. B.; Gao, Q.; Wang, D.; Boyer, C.; Kavallaris, M.; Sun, X. D.; Wang, X. M.; Zhao, L. Y. et al. Manganese-based magnetic layered double hydroxide nanoparticle: A PH-sensitive and concurrently enhanced T1/T2-weighted dual-mode magnetic resonance imaging contrast agent. ACS Biomater. Sci. Eng. 2019, 5, 2555–2562.

28

Ju, Y.; Zhang, H.; Yu, J.; Tong, S.; Tian, N.; Wang, Z.; Wang, X.; Su, X.; Chu, X.; Lin, J. et al. Monodisperse Au-Fe2C Janus nanoparticles: An attractive multifunctional material for triple-modal imaging-guided tumor photothermal therapy. ACS Nano 2017, 11, 9239–9248.

29

Liu, C. H.; Cao, Y.; Cheng, Y. R.; Wang, D. D.; Xu, T. L.; Su, L.; Zhang, X. J.; Dong, H. F. An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nat. Commun. 2020, 11, 1735.

30

Wang, C. H.; Yang, J. X.; Dong, C. Y.; Shi, S. Glucose oxidase-related cancer therapies. Adv. Ther. 2020, 3, 2000110.

31

Xie, W. S.; Gao, Q.; Wang, D.; Guo, Z. H.; Gao, F.; Wang, X. M.; Cai, Q.; Feng, S. S.; Fan, H. M.; Sun, X. D. et al. Doxorubicin-loaded Fe3O4@MoS2-PEG-2DG nanocubes as a theranostic platform for magnetic resonance imaging-guided chemo-photothermal therapy of breast cancer. Nano Res 2018, 11, 2470–2487.

32

Lewis, S. M.; Williams, A.; Eisenbarth, S. C. Structure and function of the immune system in the spleen. Sci. Immunol. 2019, 4, eaau6085.

33

Xu, J.; Xu, L. G.; Wang, C. Y.; Yang, R.; Zhuang, Q.; Han, X.; Dong, Z. L.; Zhu, W. W.; Peng, R.; Liu, Z. Near-infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano 2017, 11, 4463–4474.

34

Ding, B. B.; Shao, S.; Yu, C.; Teng, B.; Wang, M. F.; Cheng, Z. Y.; Wong, K. L.; Ma, P. A.; Lin, J. Large-pore mesoporous-silica-coated upconversion nanoparticles as multifunctional immunoadjuvants with ultrahigh photosensitizer and antigen loading efficiency for improved cancer photodynamic immunotherapy. Adv. Mater. 2018, 30, 1802479.

35

Bronte, V.; Pittet, M. J. The spleen in local and systemic regulation of immunity. Immunity 2013, 39, 806–818.

36

Xie, W. S.; Gao, Q.; Guo, Z. H.; Wang, D.; Gao, F.; Wang, X. M.; Wei, Y.; Zhao, L. Y. Injectable and self-healing thermosensitive magnetic hydrogel for asynchronous control release of doxorubicin and docetaxel to treat triple-negative breast cancer. ACS Appl. Mater. Interfaces 2017, 9, 33660–33673.

37

Kunzmann, A.; Andersson, B.; Thurnherr, T.; Krug, H.; Scheynius, A.; Fadeel, B. Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochim. Biophys. Acta Gen. Subj. 2011, 1810, 361–373.

Nano Research
Pages 2244-2253
Cite this article:
Xie W, Lu J, Guo Z, et al. Necroptosis-elicited host immunity: GOx-loaded MoS2 nanocatalysts for self-amplified chemodynamic immunotherapy. Nano Research, 2022, 15(3): 2244-2253. https://doi.org/10.1007/s12274-021-3763-7
Topics:

815

Views

15

Crossref

20

Web of Science

18

Scopus

0

CSCD

Altmetrics

Received: 07 June 2021
Revised: 15 July 2021
Accepted: 16 July 2021
Published: 28 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return