Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Triboelectric nanogenerator (TENG) has been proved as a promising energy harvester in recent years, but the challenges of exploring economically triboelectric materials still exist and have aroused interests of many researchers. In this paper, chitosan-silk fibroin-airlaid paper composite film (CSA film) was fabricated and then the CSA film based-triboelectric nanogenerator (CSA-TENG) was constructed, which presents an opportunity for natural polymers to be applied in triboelectric materials. Due to the excellent electron donating ability of CSA film, the CSA-TENG can harvest environmental energy with a high efficiency. More importantly, the as-designed CSA film based dual-electrode triboelectric nanogenerator (CSA-D-TENG) is successfully assembled into hand clapper and trampoline to harvest mechanical energies generated by human bodies, it is also capable of monitoring human movement while harvesting biomechanical energies. This work provides a simple and environmental-friendly way to develop TENG for biomechanical energies harvesting and human motion monitoring.
Hinchet, R.; Seung, W.; Kim, S. W. Recent progress on flexible triboelectric nanogenerators for selfpowered electronics. ChemSusChem. 2015, 8, 2327–2344.
Wang, Y.; Yang, Y.; Wang, Z. L. Triboelectric nanogenerators as flexible power sources. npj Flex. Electron. 2017, 1, 10.
Lai, Y. J.; Li, Z. J.; Zhao, W. X.; Cheng, X. N.; Xu, S.; Yu, X.; Liu, Y. An ultrasound-triggered cation chelation and reassembly route to one-dimensional Ni-rich cathode material enabling fast charging and stable cycling of Li-ion batteries. Nano Res. 2020, 13, 3347–3357.
Cao, X.; Jie, Y.; Wang, N.; Wang, Z. L. Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Adv. Energy. Mater. 2016, 6, 1600665.
Fan, F. R.; Tang, W.; Wang, Z. L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 2016, 28, 4283–4305.
Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.
Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Acs Nano 2013, 7, 9533–9557.
Hwang, H. J.; Jung, Y.; Choi, K.; Kim, D.; Park, J.; Choi, D. Comb-structured triboelectric nanogenerators for multi-directional energy scavenging from human movements. Sci. Technol. Adv. Mater. 2019, 20, 725–732.
Lee, K.; Lee, J. W.; Kim, K.; Yoo, D.; Kim, D. S.; Hwang, W.; Song, I.; Sim, J. Y. A spherical hybrid triboelectric nanogenerator for enhanced water wave energy harvesting. Micromachines 2018, 9, 598.
Chen, B.; Yang, Y.; Wang, Z. L. Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 2018, 8, 1702649.
He, J.; Cao, S. L.; Zhang, H. L. Cylinder-based hybrid rotary nanogenerator for harvesting rotational energy from axles and self-powered tire pressure monitoring. Energy Sci. Eng. 2020, 8, 291–299.
Wang, G.; Ma, H.; Jin, X.; Yuan, H.; Wei, Y.; Li, Q. Q.; Jiang, K. L.; Fan, S. S. Bidirectional micro-actuators based on eccentric coaxial composite oxide nanofiber. Nano Res. 2020, 13, 2451–2459.
Baik, J. M.; Lee, J. P. Strategies for ultrahigh outputs generation in triboelectric energy harvesting technologies: From fundamentals to devices. Sci. Technol. Adv. Mater. 2019, 20, 927–936.
Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.
Lee, B. Y.; Kim, D. H.; Park, J.; Park, K. I.; Lee, K. J.; Jeong, C. K. Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. Sci. Technol. Adv. Mater. 2019, 20, 758–773.
Yu, Y. H.; Wang, X. D. Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mech. Lett. 2016, 9, 514–530.
Jin, L.; Zhang, B. B.; Zhang, L. Yang, W. Q. Nanogenerator as new energy technology for self-powered intelligent transportation system. Nano Energy 2019, 66, 104086.
Zhou, Q. T.; Kim, J. N.; Han, K. W.; Oh, S. W.; Umrao, S.; Chae, E. J.; Oh, I. K. Integrated dielectric-electrode layer for triboelectric nanogenerator based on Cu nanowire-Mesh hybrid electrode. Nano Energy 2019, 59, 120–128.
Wang, J. Y.; Ding, W. B.; Pan, L.; Wu, C. S.; Yu, H.; Yang, L. J.; Liao, R. J.; Wang, Z. L. Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator. Acs Nano 2018, 12, 3954–3963.
Han, Y. J.; Han, Y. F.; Zhang, X. P.; Li, L.; Zhang, C. W.; Liu, J. H.; Lu, G.; Yu, H. D.; Huang, W. Fish gelatin based triboelectric nanogenerator for harvesting biomechanical energy and self-powered sensing of human physiological signals. ACS Appl. Mater. Interfaces 2020, 12, 16442–16450.
Buslovich, A.; Horev, B.; Shebis, Y.; Rodov, V.; Gedanken, A.; Poverenov, E. A facile method for the deposition of volatile natural compound-based nanoparticles on biodegradable polymer surfaces. J. Mater. Chem. B 2018, 6, 2240–2249.
Crini, G.; Badot, P. M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci. 2008, 33, 399–447.
LogithKumar, R.; KeshavNarayan, A.; Dhivya, S.; Chawla, A.; Saravanan, S.; Selvamurugan, N. A review of chitosan and its derivatives in bone tissue engineering. Carbohyd. Polym. 2016, 151, 172–188.
Pillai, C. K. S.; Paul, W.; Sharma, C. P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678.
Gore, P. M.; Naebe, M.; Wang, X. G. Kandasubramanian, B. Progress in silk materials for integrated water treatments: Fabrication, modification and applications. Chem. Eng. J. 2019, 374, 437–470.
Vepari, C.; Kaplan, D. L. Silk as a biomaterial. Prog. Polym. Sci. 2007, 32, 991–1007.
Altman, G. H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R. L.; Chen, J. S.; Lu, H.; Richmond, J.; Kaplan, D. L. Silk-based biomaterials. Biomaterials 2003, 24, 401–416.
Koeppel, A.; Holland, C. Progress and trends in artificial silk spinning: A systematic review. ACS Biomater. Sci. Eng. 2017, 3, 226–237.
Yang, D. C.; Song, Z. C.; Shen, J. L.; Song, H.; Yang, J. J. Zhang, P. H.; Gu, Y. Regenerated silk fibroin (RSF) electrostatic spun fibre composite with polypropylene mesh for reconstruction of abdominal wall defects in a rat model. Artif. Cell, Nanomed., Biotechnol. 2020, 48, 425–434.
Wang, C. Y.; Xia, K. L.; Zhang, Y. Y.; Kaplan, D. L. Silk-based advanced materials for soft electronics. Acc. Chem. Res. 2019, 52, 2916–2927.
Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.
Ahmed, T. A.; Aljaeid, B. M. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug. Des. Devel. Ther. 2016, 10, 483–507.
Zhang, Y. J.; He, P.; Luo, M.; Xu, X. W.; Dai, G. Z.; Yang, J. L. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 2020, 13, 919–926.
Wang, M.; Zhang, J. H.; Tang, Y. J.; Li, J.; Zhang, B. S.; Liang, E. J.; Mao, Y. C.; Wang, X. D. Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. Acs Nano 2018, 12, 6156–6162.
Zhang, Z. C.; Zhang, J. W.; Zhang, H.; Wang, H. G.; Hu, Z. W.; Xuan, W. P.; Dong, S. R.; Luo, J. K. A portable triboelectric nanogenerator for real-time respiration monitoring. Nanoscale Res. Lett. 2019, 14, 354.
Wu, Z. Y.; Ding, W. B.; Dai, Y. J.; Dong, K.; Wu, C. S.; Zhang, L.; Lin, Z. M.; Cheng, J.; Wang, Z. L. Self-powered multifunctional motion sensor enabled by magnetic-regulated triboelectric nanogenerator. ACS Nano 2018, 12, 5726–5733.