AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Unveiling the origin of anomalous low-frequency Raman mode in CVD-grown monolayer WS2

Qian Xiang1,5,§Xiaofei Yue2,§Yanlong Wang1( )Bin Du3Jiajun Chen2Shaoqian Zhang1Gang Li1Chunxiao Cong2( )Ting Yu4( )Qingwei Li1Yuqi Jin1
Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
State Key Laboratory of ASIC & System, School of Information Science and Technology, Fudan University, Shanghai 200433, China
School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
University of Chinese Academy of Sciences, Beijing 100049, China

Show Author Information

Abstract

Substrates provide the necessary support for scientific explorations of numerous promising features and exciting potential applications in two-dimensional (2D) transition metal dichalcogenides (TMDs). To utilize substrate engineering to alter the properties of 2D TMDs and avoid introducing unwanted adverse effects, various experimental techniques, such as high-frequency Raman spectroscopy, have been used to understand the interactions between 2D TMDs and substrates. However, sample–substrate interaction in 2D TMDs is not yet fully understood due to the lack of systematic studies by techniques that are sensitive to 2D TMD–substrate interaction. This work systematically investigates the interaction between tungsten disulfide (WS2) monolayers and substrates by low-frequency Raman spectroscopy, which is very sensitive to WS2–substrate interaction. Strong coupling with substrates is clearly revealed in chemical vapor deposition (CVD)-grown monolayer WS2 by its low-wavenumber interface mode. It is demonstrated that the enhanced sample–substrate interaction leads to tensile strain on monolayer WS2, which is induced during the cooling process of CVD growth and could be released for monolayer WS2 sample after transfer or fabricated by an annealing-free method such as mechanical exfoliation. These results not only suggest the effectiveness of low-frequency Raman spectroscopy for probing sample–substrate interactions in 2D TMDs, but also provide guidance for the design of high-performance devices with the desired sample–substrate coupling strength based on 2D TMDs.

Electronic Supplementary Material

Download File(s)
12274_2021_3769_MOESM1_ESM.pdf (1.1 MB)

References

1

Lin, H.; Xu, Z. Q.; Cao, G. Y.; Zhang, Y. P.; Zhou, J. D.; Wang, Z. Y.; Wan, Z. C.; Liu, Z.; Loh, K. P.; Qiu, C. W. et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light: Sci. Appl. 2020, 9, 137.

2

Peng, Z. W.; Chen, X. L.; Fan, Y. L.; Srolovitz, D. J.; Lei, D. Y. Strain engineering of 2D semiconductors and graphene: From strain fields to band-structure tuning and photonic applications. Light: Sci. Appl. 2020, 9, 190.

3

Zhang, N.; Jiang, X. J.; Fan, J.; Luo, W. W.; Xiang, Y. X.; Wu, W.; Ren, M. X.; Zhang, X. Z.; Cai, W.; Xu, J. Experimental observed plasmon near-field response in isolated suspended graphene resonators. Nanotechnology 2019, 30, 505201.

4

Zhu, Y.; Sun, X. Q.; Tang, Y. L.; Fu, L.; Lu, Y. R. Two-dimensional materials for light emitting applications: Achievement, challenge and future perspectives. Nano Res. 2021, 14, 1912–1936.

5

Cong, C. X.; Shang, J. Z.; Wang, Y. L.; Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 2018, 6, 1700767.

6

Buscema, M.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.

7

Su, L. Q.; Yu, Y. F.; Cao, L. Y.; Zhang, Y. Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS2. Nano Res. 2015, 8, 2686–2697.

8

Hosseini, M.; Elahi, M.; Pourfath, M.; Esseni, D. Strain-induced modulation of electron mobility in single-layer transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se). IEEE Trans. Electron Devices 2015, 62, 3192–3198.

9
Tan, P. H. Raman Spectroscopy of Two-Dimensional Materials; Springer: Singapore, 2019.https://doi.org/10.1007/978-981-13-1828-3
10

Ji, J. T.; Dong, S.; Zhang, A. M.; Zhang, Q. M. Low-frequency interlayer vibration modes in two-dimensional layered materials. Phys. E 2016, 80, 130–141.

11

Zhao, Y. Y.; Luo, X.; Zhang, J.; Wu, J. X.; Bai, X. X.; Wang, M. X.; Jia, J. F.; Peng, H. L.; Liu, Z. F.; Quek, S. Y. et al. Interlayer vibrational modes in few-quintuple-layer Bi2Te3 and Bi2Se3 two-dimensional crystals: Raman spectroscopy and first-principles studies. Phys. Rev. B 2014, 90, 245428.

12

Cong, X.; Liu, X. L.; Lin, M. L.; Tan, P. H. Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials. npj 2D Mater. Appl. 2020, 4, 13.

13

Puretzky, A. A.; Liang, L. B.; Li, X. F.; Xiao, K.; Sumpter, B. G.; Meunier, V.; Geohegan, D. B. Twisted MoSe2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency Raman spectroscopy. ACS Nano 2016, 10, 2736–2744.

14

Wang, K.; Huang, B.; Tian, M.; Ceballos, F.; Lin, M. W.; Mahjouri-Samani, M.; Boulesbaa, A.; Puretzky, A. A.; Rouleau, C. M.; Yoon, M. et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 2016, 10, 6612–6622.

15

Li, X.; Chen, C.; Yang, Y.; Lei, Z.; Xu, H. 2D Re-based transition metal chalcogenides: Progress, challenges, and opportunities. Adv. Sci. 2020, 7, 2002320.

16

Wang, Y. L.; Cong, C. X.; Shang, J. Z.; Eginligil, M.; Jin, Y. Q.; Li, G.; Chen, Y.; Peimyoo, N.; Yu, T. Unveiling exceptionally robust valley contrast in AA- and AB-stacked bilayer WS2. Nanoscale Horiz. 2019, 4, 396–403.

17

Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2014, 2, 131–136.

18

Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363.

19

Zheng, S. J.; Sun, L. F.; Zhou, X. H.; Liu, F. C.; Liu, Z.; Shen, Z. X.; Fan, H. J. Coupling and interlayer exciton in twist-stacked WS2 bilayers. Adv. Opt. Mater. 2015, 3, 1600–1605.

20

Zhao, Y. Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P. T.; Gan, C. K.; Wu, J.; Zhang, H.; Quek, S. Y.; Dresselhaus, M. S. et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 2013, 13, 1007–1015.

21

O’Brien, M.; McEvoy, N.; Hanlon, D.; Hallam, T.; Coleman, J. N.; Duesberg, G. S. Mapping of low-frequency Raman modes in CVD-grown transition metal dichalcogenides: Layer number, stacking orientation and resonant effects. Sci. Rep. 2016, 6, 19476.

22

Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.

23

Lai, Y. H.; Yeh, C. T.; Lin, Y. H.; Hung, W. H. Adsorption and thermal decomposition of H2S on Si(100). Surf. Sci. 2002, 519, 150–156.

24
Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Minnesota, 1979.
25

Wang, X. L.; Gong, Y. J.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G. L.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E. et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 2014, 8, 5125–5131.

26

Shang, X.; Rao, Y.; Lu, S. S.; Dong, B.; Zhang, L. M.; Liu, X. H.; Li, X.; Liu, Y. R.; Chai, Y. M.; Liu, C. G. Novel WS2/WO3 heterostructured nanosheets as efficient electrocatalyst for hydrogen evolution reaction. Mater. Chem. Phys. 2017, 197, 123–128.

27

Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963–8971.

28

Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X. L.; Zhou, W.; Yu, T.; Qiu, C. Y.; Birdwell, A. G.; Crowne, F. J. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 2014, 5, 5246.

29

Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F. M. Anomalous Raman spectra and thickness-dependent electronic properties of WSe2. Phys. Rev. B 2013, 87, 165409.

30

Wang, Y. L.; Cong, C. X.; Yang, W. H.; Shang, J. Z.; Peimyoo, N.; Chen, Y.; Kang, J. Y.; Wang, J. P.; Huang, W.; Yu, T. Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562–2572.

31

Liu, K. H.; Zhang, L. M.; Cao, T.; Jin, C. H.; Qiu, D. N.; Zhou, Q.; Zettl, A.; Yang, P. D.; Louie, S. G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014, 5, 4966.

32

van der Zande, A. M.; Kunstmann, J.; Chernikov, A.; Chenet, D. A.; You, Y. M.; Zhang, X. X.; Huang, P. Y.; Berkelbach, T. C.; Wang, L.; Zhang, F. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 2014, 14, 3869–3875.

33

Xia, M.; Li, B.; Yin, K. B.; Capellini, G.; Niu, G.; Gong, Y. J.; Zhou, W.; Ajayan, P. M.; Xie, Y. H. Spectroscopic signatures of AA' and AB stacking of chemical vapor deposited bilayer MoS2. ACS Nano 2015, 9, 12246–12254.

Nano Research
Pages 4314-4320
Cite this article:
Xiang Q, Yue X, Wang Y, et al. Unveiling the origin of anomalous low-frequency Raman mode in CVD-grown monolayer WS2. Nano Research, 2021, 14(11): 4314-4320. https://doi.org/10.1007/s12274-021-3769-1
Topics:

827

Views

14

Crossref

16

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 13 May 2021
Revised: 18 July 2021
Accepted: 27 July 2021
Published: 12 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return