Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Potassium-ion batteries (PIBs) are of academic and economic significance, but still limited by the lack of highly active electrode materials for de-/intercalation of large-radius K ions. Herein, an interconnected nitrogen/sulfur co-doped carbon nanosheep bundle (N/S-CSB) was proposed as the potassium ions storage material. The rich co-doping of nitrogen/sulfur of N/S-CNB with three-dimensional hierarchical bundled array structure yields distensible interlayer spaces to buffer the volume expansion during K+ insertion/extraction, offers more electrochemical active sites to obtain a high specific capacity, and provides efficient channels for fast ion/electron transports. Therefore, the N/S-CSB anode achieved high reversible specific capacity of 365 mAh/g obtained at 50 mA/g after 200 cycles with a coulombic efficiency (CE) close to 100%, high rate performance and long cycle stability. Moreover, the in-situ Raman spectra indicated outstanding reaction kinetics of as-prepared N/S-CSB anode.
Liu, K.; Liu, Y. Y.; Lin, D. C.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, eaas9820.
Jia, J. C.; Hu, X.; Wen, Z. H. Robust 3D network architectures of MnO nanoparticles bridged by ultrathin graphitic carbon for high-performance lithium-ion battery anodes. Nano Res. 2018, 11, 1135–1145.
Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550.
Pender, J. P.; Jha, G.; Youn, D. H.; Ziegler, J. M.; Andoni, I.; Choi, E. J.; Heller, A.; Dunn, B. S.; Weiss, P. S.; Penner, R. M. et al. Electrode degradation in lithium-ion batteries. ACS Nano 2020, 14, 1243–1295.
Seong, W. M.; Park, K. Y.; Lee, M. H.; Moon, S.; Oh, K.; Park, H.; Lee, S.; Kang, K. Abnormal self-discharge in lithium-ion batteries. Energy Environ. Sci. 2018, 11, 970–978.
Xie, J.; Lu, Y. C. A retrospective on lithium-ion batteries. Nat. Commun. 2020, 11, 2499.
Zhang, W.; Yin, J.; Zhang, P.; Tang, X. Q.; Ding, Y. H. Two-dimensional phosphorus carbide as a promising anode material for lithium-ion batteries. J. Mater. Chem. A 2018, 6, 12029–12037.
Zhou, J.; Chen, M. X.; Wang, T.; Li, S. Y.; Zhang, Q. S.; Zhang, M.; Xu, H. J.; Liu, J. L.; Liang, J. F.; Zhu, J. et al. Covalent selenium embedded in hierarchical carbon nanofibers for ultra-high areal capacity Li-Se batteries. iScience 2020, 23, 100919.
Cao, J. H.; Xu, H. J.; Zhong, J.; Li, X. Q.; Li, S. Y.; Wang, Y. Y.; Zhang, M.; Deng, H. L.; Wang, Y. L.; Cui, C. Y. et al. Dual-carbon electrode-based high-energy-density potassium-ion hybrid capacitor. ACS Appl. Mater. Interfaces 2021, 13, 8497–8506.
Chen, J. T.; Yang, B. J.; Li, H. X.; Ma, P. J.; Lang, J. W.; Yan, X. B. Candle soot: Onion-like carbon, an advanced anode material for a potassium-ion hybrid capacitor. J. Mater. Chem. A 2019, 7, 9247–9252.
Deng, L. Q.; Niu, X. G.; Ma, G. S.; Yang, Z.; Zeng, L.; Zhu, Y. J.; Guo, L. Layered potassium vanadate K0.5V2O5 as a cathode material for nonaqueous potassium ion batteries. Adv. Funct. Mater. 2018, 28, 1800670.
Fan, L.; Ma, R. F.; Zhang, Q. F.; Jia, X. X.; Lu, B. A. Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500–10505.
Gao, L.; Wang, Z. J.; Hu, H.; Cheng, H. Y.; Zhang, L. L.; Yang, X. L. Nitrogen-doped carbon microfiber networks decorated with CuO/Cu clusters as self-supported anode materials for potassium ion batteries. J. Electroanal. Chem. 2020, 876, 114483.
Luo, H. Y.; Chen, M. X.; Cao, J. H.; Zhang, M.; Tan, S.; Wang, L.; Zhong, J.; Deng, H. L.; Zhu, J.; Lu, B. A. Cocoon silk-derived, hierarchically porous carbon as anode for highly robust potassium-ion hybrid capacitors. Nano-Micro Lett. 2020, 12, 113.
Chang, X. Q.; Zhou, X. L.; Ou, X. W.; Lee, C. S.; Zhou, J. W.; Tang, Y. B. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 2019, 9, 1902672.
Ding, J.; Zhang, H. L.; Zhou, H.; Feng, J.; Zheng, X. R.; Zhong, C.; Paek, E.; Hu, W. B.; Mitlin, D. Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 2019, 31, 1900429.
Ji, B. F.; Zhang, F.; Song, X. H.; Tang, Y. B. A novel potassium-ion-based dual-ion battery. Adv. Mater. 2017, 29, 1700519.
Chen, M. X.; Wang, L.; Sheng, X. H.; Wang, T.; Zhou, J.; Li, S. Y.; Shen, X. H.; Zhang, M.; Zhang, Q. S.; Yu, X. Z. et al. An ultrastable nonaqueous potassium-ion hybrid capacitor. Adv. Funct. Mater. 2020, 30, 2004247.
Ruan, J. F.; Mo, F. J.; Chen, Z. L.; Liu, M.; Zheng, S. Y.; Wu, R. B.; Fang, F.; Song, Y.; Sun, D. L. Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors. Adv. Energy Mater. 2020, 10, 1904050.
Wang, L. P.; Yang, J. Y.; Li, J.; Chen, T.; Chen, S. L.; Wu, Z. R.; Qiu, J. L.; Wang, B. J.; Gao, P.; Niu, X. B. et al. Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte. J. Power Sources 2019, 409, 24–30.
Liu, Y. W.; Gao, C.; Dai, L.; Deng, Q. B.; Wang, L.; Luo, J. Y.; Liu, S.; Hu, N. The features and progress of electrolyte for potassium ion batteries. Small 2020, 16, 2004096.
Rajagopalan, R.; Tang, Y. E.; Ji, X. B.; Jia, C. K.; Wang, H. Y. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.
Jian, Z. L.; Hwang, S.; Li, Z. F.; Hernandez, A. S.; Wang, X. F.; Xing, Z. Y.; Su, D.; Ji, X. L. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700324.
Liu, Y. Z.; Yang, C. H.; Pan, Q. C.; Li, Y. P.; Wang, G.; Ou, X.; Zheng, F. H.; Xiong, X. H.; Liu, M. L.; Zhang, Q. Y. Nitrogen-doped bamboo-like carbon nanotubes as anode material for high performance potassium ion batteries. J. Mater. Chem. A 2018, 6, 15162–15169.
Tai, Z. X.; Zhang, Q.; Liu, Y. J.; Liu, H. K.; Dou, S. X. Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon 2017, 123, 54–61.
Fan, L.; Liu, Q.; Chen, S. H.; Lin, K. R.; Xu, Z.; Lu, B. A. Potassium-based dual ion battery with dual-graphite electrode. Small 2017, 13, 1701011.
Cohn, A. P.; Muralidharan, N.; Carter, R.; Share, K.; Oakes, L.; Pint, C. L. Durable potassium ion battery electrodes from high-rate cointercalation into graphitic carbons. J. Mater. Chem. A 2016, 4, 14954–14959.
Liu, Y.; Lu, Y. X.; Xu, Y. S.; Meng, Q. S.; Gao, J. C.; Sun, Y. G.; Hu, Y. S.; Chang, B. B.; Liu, C. T.; Cao, A. M. Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 2020, 32, 2000505.
Ma, G. Y.; Li, C. J.; Liu, F.; Majeed, M. K.; Feng, Z. Y.; Cui, Y. H.; Yang, J.; Qian, Y. T. Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Mater. Today Energy 2018, 10, 241–248.
Ma, X. Q.; Xiao, N.; Xiao, J.; Song, X. D.; Guo, H. D.; Wang, Y. T.; Zhao, S. J.; Zhong, Y. P.; Qiu, J. S. Nitrogen and phosphorus dual-doped porous carbons for high-rate potassium ion batteries. Carbon 2021, 179, 33–41.
Miao, W. F.; Zhao, X. Y.; Wang, R.; Liu, Y. Q.; Li, L.; Zhang, Z. S.; Zhang, W. M. Carbon shell encapsulated cobalt phosphide nanoparticles embedded in carbon nanotubes supported on carbon nanofibers: A promising anode for potassium ion battery. J. Colloid Interface Sci. 2019, 556, 432–440.
Zeng, S. F.; Zhou, X. F.; Wang, B.; Feng, Y. Z.; Xu, R.; Zhang, H. B.; Peng, S. M.; Yu, Y. Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries. J. Mater. Chem. A 2019, 7, 15774–15781.
Zhang, G.; Ou, X. W.; Cui, C. Y.; Ma, J. M.; Yang, J. H.; Tang, Y. B. High-performance cathode based on self-templated 3D porous microcrystalline carbon with improved anion adsorption and intercalation. Adv. Funct. Mater. 2019, 29, 1806722.
Zheng, J. F.; Wu, Y. J.; Sun, Y. J.; Rong, J. H.; Li, H. Y.; Niu, L. Advanced anode materials of potassium ion batteries: From zero dimension to three dimensions. Nano-Micro Lett. 2021, 13, 12.
Qiao, Y.; Ma, M. Y.; Liu, Y.; Li, S.; Lu, Z. S.; Yue, H. Y.; Dong, H. Y.; Cao, Z. X.; Yin, Y. H.; Yang, S. T. First-principles and experimental study of nitrogen/sulfur co-doped carbon nanosheets as anodes for rechargeable sodium ion batteries. J. Mater. Chem. A 2016, 4, 15565–15574.
Shen, Y. P.; Huang, C.; Li, Y. H.; Zhou, Y.; Xu, Y. L.; Zhang, Y.; Hu, A. P.; Tang, Q. L.; Song, X. Y.; Jiang, C. Z. et al. Enhanced sodium and potassium ions storage of soft carbon by a S/O co-doped strategy. Electrochim. Acta 2021, 367, 137526.
Xu, L. H.; Guo, W. T.; Zeng, L. X.; Xia, X. S.; Wang, Y. Y.; Xiong, P. X.; Chen, Q. H.; Zhang, J. M.; Wei, M. D.; Qian, Q. R. V3Se4 embedded within N/P co-doped carbon fibers for sodium/potassium ion batteries. Chem. Eng. J. 2021, 419, 129607.
Yang, L. P.; Zhang, Z. H.; Xia, L. S.; Zhao, Y. F.; Li, F.; Zhang, X.; Wei, J. P.; Zhou, Z. Integrated insights into Na+ storage mechanism and electrochemical kinetics of ultrafine V2O3/S and N co-doped rGO composites as anodes for sodium ion batteries. J. Mater. Chem. A 2019, 7, 22429–22435.
Yang, W. X.; Zhou, J. H.; Wang, S.; Wang, Z. C.; Lv, F.; Zhang, W. S.; Zhang, W. Y.; Sun, Q.; Guo, S. J. A three-dimensional carbon framework constructed by N/S co-doped graphene nanosheets with expanded interlayer spacing facilitates potassium ion storage. ACS Energy Lett. 2020, 5, 1653–1661.
Cui, C. Y.; Wang, H.; Wang, M.; Ou, X. W.; Wei, Z. X.; Ma, J. M.; Tang, Y. B. Hollow carbon nanobelts Co-doped with nitrogen and sulfur via a self-templated method for a high-performance sodium-ion capacitor. Small 2019, 15, 1902659.