AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Effects of interlayer coupling on the excitons and electronic structures of WS2/hBN/MoS2 van der Waals heterostructures

Xudan Zhu1Junbo He1Rongjun Zhang1( )Chunxiao Cong2( )Yuxiang Zheng1Hao Zhang1Songyou Wang1Haibin Zhao1Meiping Zhu3Shanwen Zhang4Shaojuan Li5Liangyao Chen1
Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Engineering, Fudan University, Shanghai 200433, China
State Key Laboratory of ASIC and System, School of Information Science and Engineering, Fudan University, Shanghai 200433, China
Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Grating Technology Laboratory, Changchun Institute of Optics and Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
State Key Laboratory of Applied Optics, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Show Author Information

Graphical Abstract

Abstract

Inserting hexagonal boron nitride (hBN) as barrier layers into bilayer transition metal dichalcogenides heterointerface has been proved an efficient method to improve two dimensional tunneling optoelectronic device performance. Nevertheless, the physical picture of interlayer coupling effect during incorporation of monolayer (1L-) hBN is not explicit yet. In this article, spectroscopic ellipsometry was used to experimentally obtain the broadband excitonic and critical point properties of WS2/MoS2 and WS2/hBN/MoS2 van der Waals heterostructures. We find that 1L-hBN can only slightly block the interlayer electron transfer from WS2 layer to MoS2 layer. Moreover, insertion of 1L-hBN weakens the interlayer coupling effect by releasing quantum confinement and reducing efficient dielectric screening. Consequently, the exciton binding energies in WS2/hBN/MoS2 heterostructures blueshift comparing to those in WS2/MoS2 heterostructures. In this exciton binding energies tuning process, the reducing dielectric screening effect plays a leading role. In the meantime, the quasi-particle (QP) bandgap remains unchanged before and after 1L-hBN insertion, which is attributed to released quantum confinement and decreased dielectric screening effects canceling each other. Unchanged QP bandgap as along with blueshift exciton binding energies lead to the redshift exciton transition energies in WS2/hBN/MoS2 heterostructures.

References

1

Zhou, X.; Hu, X. Z.; Yu, J.; Liu, S. Y.; Shu, Z. W.; Zhang, Q.; Li, H. Q.; Ma, Y.; Xu, H.; Zhai, T. Y. 2D layered material-based van der Waals heterostructures for optoelectronics. Adv. Funct. Mater. 2018, 28, 1706587.

2

Shim, J.; Kang, D. H.; Kim, Y.; Kum, H.; Kong, W.; Bae, S. H.; Almansouri, I.; Lee, K.; Park, J. H.; Kim, J. Recent progress in van der Waals (vdW) heterojunction-based electronic and optoelectronic devices. Carbon 2018, 133, 78–89.

3

Zhu, S.; Gong, L. J.; Xie, J. N.; Gu, Z. J.; Zhao, Y. L. Design, synthesis, and surface modification of materials based on transition-metal dichalcogenides for biomedical applications. Small Methods 2017, 1, 1700220.

4

Hu, W.; Yang, J. L. Two-dimensional van der Waals heterojunctions for functional materials and devices. J. Mater. Chem. C 2017, 5, 12289–12297.

5

Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44–126.

6

Singh, E.; Kim, K. S.; Yeom, G. Y.; Nalwa, H. S. Atomically thin-layered molybdenum disulfide (MoS2) for bulk-heterojunction solar cells. ACS Appl. Mater. Interfaces 2017, 9, 3223–3245.

7

Cheng, R.; Li, D. H; Zhou, H. L.; Wang, C.; Yin, A. X.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. F. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 2014, 14, 5590–5597.

8

Ross, J. S.; Rivera, P.; Schaibley, J.; Lee-Wong, E.; Yu, H. Y.; Taniguchi, T.; Watanabe, K.; Yan, J. Q.; Mandrus, D.; Cobden, D. et al. Interlayer exciton optoelectronics in a 2D heterostructure p-n junction. Nano Lett. 2017, 17, 638–643.

9

Sundaram, R. S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A. C.; Avouris, P.; Steiner, M. Electroluminescence in single layer MoS2. Nano Lett. 2013, 13, 1416–1421.

10

Zhang, W. J.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 2013, 25, 3456–3461.

11

Zheng, Y.; Xiang, D.; Zhang, J. L.; Guo, R.; Wang, W. H.; Liu, T.; Loh, L. Y.; Wang, Y. N.; Gao, J.; Han, C. et al. Controlling phase transition in WSe2 towards ideal n-type transistor. Nano Res. 2021, 14, 2703–2710.

12

Dalila, R. N.; Md Arshad, M. K.; Gopinath, S. C. B.; Norhaimi, W. M. W.; Fathil, M. F. M. Current and future envision on developing biosensors aided by 2D molybdenum disulfide (MoS2) productions. Biosens. Bioelectron. 2019, 132, 248–264.

13

Choi, J. M.; Jang, H. Y.; Kim, A. R.; Kwon, J. D.; Cho, B.; Park, M. H.; Kim, Y. H. Ultra-flexible and rollable 2D-MoS2/Si heterojunction-based near-infrared photodetector via direct synthesis. Nanoscale 2021, 13, 672–680.

14

Li, J. Y.; Ding, Y.; Zhang, D. W.; Zhou, P. Photodetectors based on two-dimensional materials and their van der waals heterostructures. Acta Phys. Chim. Sin. 2019, 35, 1058–1077.

15

Wasalathilake, K. C.; Hu, N.; Fu, S. Y.; Zheng, J. C.; Du, A. J.; Yan, C. High capacity and mobility in germanium sulfide/graphene (GeS/Gr) van der Waals heterostructure as anode materials for sodium–ion batteries: A first-principles investigation. Appl. Surf. Sci. 2021, 536, 147779.

16

Pataniya, P. M.; Late, D.; Sumesh, C. K. Photosensitive WS2/ZnO nano-heterostructure-based electrocatalysts for hydrogen evolution reaction. ACS Appl. Energy Mater. 2021, 4, 755–762.

17

Lin, Y.; Pan, D. M.; Luo, H. Hollow direct Z‒scheme CdS/BiVO4 composite with boosted photocatalytic performance for RhB degradation and hydrogen production. Mater. Sci. Semicond. Process. 2021, 121, 105453.

18

Li, X.; Zhang, S.; Wang, X. J.; Huang, G. F.; Xia, L. X.; Hu, W. Y.; Huang, W. Q. A two-dimensional MoS2/SnS heterostructure for promising photocatalytic performance: First-principles investigations. Phys. E Low Dimens. Syst. Nanostruct. 2021, 126, 114453.

19

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

20

Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.

21

Fang, H.; Battaglia, C.; Carraro, C.; Nemsak, S.; Ozdol, B.; Kang, J. S.; Bechtel, H. A.; Desai, S. B.; Kronast, F.; Unal, A. A. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA 2014, 111, 6198–6202.

22

Binder, J.; Withers, F.; Molas, M. R.; Faugeras, C.; Nogajewski, K.; Watanabe, K.; Taniguchi, T.; Kozikov, A.; Geim, A. K.; Novoselov, K. S. et al. Sub-bandgap voltage electroluminescence and magneto-oscillations in a WSe2 light-emitting van der Waals heterostructure. Nano Lett. 2017, 17, 1425–1430.

23

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

24

Chiu, M. H.; Li, Y. M.; Zhang, W. G.; Hsu, W. T.; Chang, W. H.; Terrones, M.; Terrones, H.; Li, L. J. Spectroscopic signatures for interlayer coupling in MoS2-WSe2 van der Waals stacking. ACS Nano 2014, 8, 9649–9656.

25

Gao, S. Y.; Yang, L.; Spataru, C. D. Interlayer coupling and gate-tunable excitons in transition metal dichalcogenide heterostructures. Nano Lett. 2017, 17, 7809–7813.

26

Xia, W. S.; Dai, L. P.; Yu, P.; Tong, X.; Song, W. P.; Zhang, G. J.; Wang, Z. M. Recent progress in van der Waals heterojunctions. Nanoscale 2017, 9, 4324–4365.

27

Pant, A.; Mutlu, Z.; Wickramaratne, D.; Cai, H.; Lake, R. K.; Ozkan, C.; Tongay, S. Fundamentals of lateral and vertical heterojunctions of atomically thin materials. Nanoscale 2016, 8, 3870–3887.

28

Torun, E.; Miranda, H. P. C.; Molina-Sánchez, A.; Wirtz, L. Interlayer and intralayer excitons in MoS2/WS2 and MoSe2/WSe2 heterobilayers. Phys. Rev. B 2018, 97, 245427.

29

Zhu, X. D.; He, J. B.; Zhang, R. J.; Cong, C. X.; Zheng, Y. X.; Zhang, H.; Zhang, S. W.; Chen, L. Y. Effects of dielectric screening on the excitonic and critical points properties of WS2/MoS2 heterostructures. Nanoscale 2020, 12, 23732–23739.

30

Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y. L.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.

31

Latini, S.; Winther, K. T.; Olsen, T.; Thygesen, K. S. Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Lett. 2017, 17, 938–945.

32

Nayak, P. K.; Horbatenko, Y.; Ahn, S.; Kim, G.; Lee, J. U.; Ma, K. Y.; Jang, A. R.; Lim, H.; Kim, D.; Ryu, S. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 2017, 11, 4041–4050.

33

Wilson, N. R.; Nguyen, P. V.; Seyler, K.; Rivera, P.; Marsden, A. J.; Laker, Z. P. L.; Constantinescu, G. C.; Kandyba, V.; Barinov, A.; Hine, N. D. M. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 2017, 3, e1601832.

34

Bradley, A. J.; Ugeda, M. M.; Da Jornada, F. H.; Qiu, D. Y.; Ruan, W.; Zhang, Y.; Wickenburg, S.; Riss, A.; Lu, J.; Mo, S. K. et al. Probing the role of interlayer coupling and coulomb interactions on electronic structure in few-layer MoSe2 nanostructures. Nano Lett. 2015, 15, 2594–2599.

35

Wang, G.; Chernikov, A.; Glazov, M. M.; Heinz, T. F.; Marie, X.; Amand, T.; Urbaszek, B. Excitons in atomically thin transition-metal dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001.

36

Zhu, X. D.; Zhang, R. J.; Zheng, Y. X.; Wang, S. Y.; Chen, L. R. Spectroscopic ellipsometry and its applications in the study of thin film materials. Chin. Opt. 2019, 12, 1195.

37

Shi, Y. J.; Zhang, R. J.; Zheng, H.; Li, D. H.; Wei, W.; Chen, X.; Sun, Y.; Wei, Y. F.; Lu, H. L.; Dai, N. et al. Optical constants and band gap evolution with phase transition in sub-20-nm-thick TiO2 films prepared by ALD. Nanoscale Res. Lett. 2017, 12, 243.

38

He, J. B.; Jiang, W.; Zhu, X. D.; Zhang, R. J.; Wang, J. L.; Zhu, M. P.; Wang, S. Y.; Zheng, Y. X.; Chen, L. Y. Optical properties of thickness-controlled PtSe2 thin films studied via spectroscopic ellipsometry. Phys. Chem. Chem. Phys. 2020, 22, 26383–26389.

39

Zhu, X. D.; Li, D. H.; Zhang, R. J.; Zhang, H.; Cong, C. X.; Zhu, M. P.; Shi, Y. J.; Wu, Y.; Wang, S. Y.; Zheng, Y. X. et al. Probing quantum confinement effects on the excitonic property and electronic band structures of MoS2. Appl. Surf. Sci. 2020, 519, 146262.

40

Shen, W. F.; Wei, Y. X.; Hu, C. G.; López-Posadas, C. B.; Hohage, M.; Sun, L. D. Substrate induced optical anisotropy in monolayer MoS2. J. Phys. Chem. C 2020, 124, 15468–15473.

41

Yang, J. Y.; Zhang, W. J.; Liu, L. H. Anisotropic dielectric functions of (0001) sapphire from spectroscopic ellipsometry and first-principles study. Phys. B:Condens. Matter 2015, 473, 35–41.

42

Li, D. H.; Zheng, H.; Wang, Z. Y.; Zhang, R. J.; Zhang, H.; Zheng, Y. X.; Wang, S. Y.; Zhang, D. W.; Chen, L. Y. Dielectric functions and critical points of crystalline WS2 ultrathin films with tunable thickness. Phys. Chem. Chem. Phys. 2017, 19, 12022–12031.

43

Vu, Q. A.; Lee, J. H.; Nguyen, V. L.; Shin, Y. S.; Lim, S. C.; Lee, K.; Heo, J.; Park, S.; Kim, K.; Lee, Y. H. et al. Tuning carrier tunneling in van der Waals heterostructures for ultrahigh detectivity. Nano Lett. 2017, 17, 453–459.

44

Zhang, X.; Han, W. P.; Wu, J. B.; Milana, S.; Lu, Y.; Li, Q. Q.; Ferrari, A. C.; Tan, P. H. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B 2013, 87, 115413.

45

Peimyoo, N.; Shang, J. Z.; Yang, W. H.; Wang, Y. L.; Cong, C. X.; Yu, T. Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy. Nano Res. 2015, 8, 1210–1221.

46

Liang, L. B.; Meunier, V. First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 2014, 6, 5394–5401.

47

Mouri, S.; Zhang, W. J.; Kozawa, D.; Miyauchi, Y.; Eda, G.; Matsuda, K. Thermal dissociation of inter-layer excitons in MoS2/MoSe2 hetero-bilayers. Nanoscale 2017, 9, 6674–6679.

48

Tran, M. D.; Kim, J. H.; Lee, Y. H. Tailoring photoluminescence of monolayer transition metal dichalcogenides. Curr. Appl. Phys. 2016, 16, 1159–1174.

49
Grundmann, M., The Physics of Semiconductors; Springer: Berlin Heidelberg, 2006; pp 232–235.
50

Cong, C. X.; Shang, J. Z.; Wang, Y. L.; Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 2018, 6, 1700767.

51

Deilmann, T.; Thygesen, K. S. Interlayer trions in the MoS2/WS2 van der Waals heterostructure. Nano Lett. 2018, 18, 1460–1465.

52

Yu, Y. F.; Hu, S.; Su, L. Q.; Huang, L. J.; Liu, Y.; Jin, Z. H.; Purezky, A. A.; Geohegan, D. B.; Kim, K. W.; Zhang, Y. et al. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett. 2015, 15, 486–491.

53

Heo, H.; Sung, J. H.; Cha, S.; Jang, B. G.; Kim, J. Y.; Jin, G.; Lee, D.; Ahn, J. H.; Lee, M. J.; Shim, J. H. et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat. Commun. 2015, 6, 7372.

54

Shang, J. Z.; Shen, X. N.; Cong, C. X.; Peimyoo, N.; Cao, B. C.; Eginligil, M.; Yu, T. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 2015, 9, 647–655.

55

Peimyoo, N.; Yang, W. H.; Shang, J. Z.; Shen, X. N.; Wang, Y. L.; Yu, T. Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2. ACS Nano 2014, 8, 11320–11329.

56

Lin, Y. X.; Ling, X.; Yu, L. L.; Huang, S. X.; Hsu, A. L.; Lee, Y. H.; Kong, J.; Dresselhaus, M. S.; Palacios, T. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 2014, 14, 5569–5576.

57

Li, L. H.; Santos, E. J. G.; Xing, T.; Cappelluti, E.; Roldán, R.; Chen, Y.; Watanabe, K.; Taniguchi, T. Dielectric screening in atomically thin boron nitride nanosheets. Nano Lett. 2015, 15, 218–223.

58

Latini, S.; Olsen, T.; Thygesen, K. S. Excitons in van der Waals heterostructures: The important role of dielectric screening. Phys. Rev. B 2015, 92, 245123.

59

Koo, J.; Gao, S. Y.; Lee, H.; Yang, L. Vertical dielectric screening of few-layer van der Waals semiconductors. Nanoscale 2017, 9, 14540–14547.

60
Fujiwara, H., Spectroscopic Ellipsometry: Principles and Applications; John Wiley & Sons: New York, 2007.
61

Li, W.; Birdwell, A. G.; Amani, M.; Burke, R. A.; Ling, X.; Lee, Y. H.; Liang, X. L.; Peng, L. M.; Richter, C. A.; Kong, J. et al. Broadband optical properties of large-area monolayer CVD molybdenum disulfide. Phys. Rev. B 2014, 90, 195434.

62
Yu, P. Y.; Cardona, M., Fundamentals of Semiconductors: Physics and Materials Properties; 4th ed. Springer: Heidelberg, 2010; pp 788.
63

Le, N. B.; Huan, T. D.; Woods, L. M. Interlayer interactions in van der Waals heterostructures: Electron and phonon properties. ACS Appl. Mater. Interfaces 2016, 8, 6286–6292.

64

Wu, M. H.; Qian, X. F.; Li, J. Tunable exciton funnel using moiré superlattice in twisted van der Waals bilayer. Nano Lett. 2014, 14, 5350–5357.

65

Shi, J.; Li, Y. Z.; Zhang, Z. P.; Feng, W. Q.; Wang, Q.; Ren, S. L.; Zhang, J.; Du, W. N.; Wu, X. X.; Sui, X. Y. et al. Twisted-angle-dependent optical behaviors of intralayer excitons and trions in WS2/WSe2 heterostructure. ACS Photonics 2019, 6, 3082–3091.

66

Sharma, A.; Harnish, P.; Sylvester, A.; Kotov, V. N.; Neto, A. H. C. Van der Waals forces and electron-electron interactions in two strained graphene layers. Phys. Rev. B 2014, 89, 235425.

67

Li, D. H.; Song, X. F.; Xu, J. P.; Wang, Z. Y.; Zhang, R. J.; Zhou, P.; Zhang, H.; Huang, R. Z.; Wang, S. Y.; Zheng, Y. X. et al. Optical properties of thickness-controlled MoS2 thin films studied by spectroscopic ellipsometry. Appl. Surf. Sci. 2017, 421, 884–890.

68

Waldecker, L.; Raja, A.; Rösner, M.; Steinke, C.; Bostwick, A.; Koch, R. J.; Jozwiak, C.; Taniguchi, T.; Watanabe, K.; Rotenberg, E. et al. Rigid band shifts in two-dimensional semiconductors through external dielectric screening. Phys. Rev. Lett. 2019, 123, 206403.

Nano Research
Pages 2674-2681
Cite this article:
Zhu X, He J, Zhang R, et al. Effects of interlayer coupling on the excitons and electronic structures of WS2/hBN/MoS2 van der Waals heterostructures. Nano Research, 2022, 15(3): 2674-2681. https://doi.org/10.1007/s12274-021-3774-4
Topics:

902

Views

30

Crossref

30

Web of Science

30

Scopus

2

CSCD

Altmetrics

Received: 20 May 2021
Revised: 19 July 2021
Accepted: 27 July 2021
Published: 19 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return