Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The judicious implantation of active metal cations into the surface of semiconductor nanocrystal (NC) through cation-exchange is one of the facile and viable strategies to enhance the activity of catalysts for photocatalytic CO2 reduction, by shortening the transfer pathway of photogenerated carriers and increasing the active sites simultaneously. However, cation-exchange is hard to achieve for halide perovskite NCs owing to the stable octahedron of [PbX6]4− with strong interaction between halogen and lead. Herein, we report a facile method to overcome this obstacle by replacing partial Br− with acetate (Ac−) to generate CsPbBr3 NC (coded as CsPbBr3−xAcx). A small amount of Ac− instead of Br− does not change the crystal structure of halide perovskite. Owing to the weaker interaction between acetate and lead in comparison with bromide, the corresponding octahedron structure containing acetate in CsPbBr3−xAcx can be easily opened to realize efficient cation-exchange with Ni2+ ions. The resulting high loading amount of Ni2+ as active site endows CsPbBr3−xAcx with an improved performance for photocatalytic CO2 reduction under visible light irradiation, exhibiting a significantly increased CO yield of 44.09 μmol·g−1·h−1, which is over 8 and 3 times higher than those of traditional pristine CsPbBr3 and nickel doped CsPbBr3 NC, respectively. This work provides a critical solution for the efficient metal doping of low-cost halide perovskite NCs to enhance their photocatalytic activity, promoting their practical applications in the field of photocatalysis.
Zhang, Z. E.; Pan, S. Y.; Li, H.; Cai, J. C.; Olabi, A. G.; Anthony, E. J.; Manovic, V. Recent advances in carbon dioxide utilization. Renew. Sust. Energy Rev. 2020, 125, 109799.
Kreft, S.; Schoch, R.; Schneidewind, J.; Rabeah, J.; Kondratenko, E. V.; Kondratenko, V. A.; Junge, H.; Bauer, M.; Wohlrab, S.; Beller, M. Improving selectivity and activity of CO2 reduction photocatalysts with oxygen. Chem 2019, 5, 1818–1833.
Han, Q. T.; Bai, X. W.; Man, Z. Q.; He, H. C.; Li, L.; Hu, J. Q.; Alsaedi, A.; Hayat, T.; Yu, Z. T.; Zhang, W. H. et al. Convincing synthesis of atomically thin, single-crystalline InVO4 sheets toward promoting highly selective and efficient solar conversion of CO2 into CO. J. Am. Chem. Soc. 2019, 141, 4209–4213.
Wu, J.; Li, X. D.; Shi, W.; Ling, P. Q.; Sun, Y. F.; Jiao, X. C.; Gao, S.; Liang, L.; Xu, J. Q.; Yan, W. S. et al. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew. Chem., Int. Ed. 2018, 57, 8719–8723.
Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372–7408.
Ye, S.; Ding, C. M.; Liu, M. Y.; Wang, A. Q.; Huang, Q. G.; Li, C. Water oxidation catalysts for artificial photosynthesis. Adv. Mater. 2019, 31, 1902069.
Zhang, W. H.; Mohamed, A. R.; Ong, W. J. Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angew. Chem., Int. Ed. 2020, 59, 22894–22915.
Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.
Tian, S. F.; Chen, S. D.; Ren, X. T.; Hu, Y. Q.; Hu, H. Y.; Sun, J. J.; Bai, F. An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665–2672.
Correa-Baena, J. P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744.
Liu, X. K.; Xu, W. D.; Bai, S.; Jin, Y. Z.; Wang, J. P.; Friend, R. H.; Gao, F. Metal halide perovskites for light-emitting diodes. Nat. Mater. 2021, 20, 10–21.
Zhu, X. L.; Lin, Y. X.; Sun, Y.; Beard, M. C.; Yan, Y. Lead-halide perovskites for photocatalytic α-alkylation of aldehydes. J. Am. Chem. Soc. 2019, 141, 733–738.
Xu, Y. F.; Yang, M. Z.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663.
Gao, G.; Xi, Q. Y.; Zhou, H.; Zhao, Y. X.; Wu, C. Q.; Wang, L. D.; Guo, P. R.; Xu, J. W. Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale 2017, 9, 12032–12038.
Park, S.; Chang, W. J.; Lee, C. W.; Park, S.; Ahn, H. Y.; Nam, K. T. Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat. Energy 2017, 2, 16185.
Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.
Chen, J.; Dong, C. W.; Idriss, H.; Mohammed, O. F.; Bakr, O. M. Metal halide perovskites for solar-to-chemical fuel conversion. Adv. Energy Mater. 2020, 10, 1902433.
Huang, H. W.; Pradhan, B.; Hofkens, J.; Roeffaers, M. B. J.; Steele, J. A. Solar-driven metal halide perovskite photocatalysis: Design, stability, and performance. ACS Energy Lett. 2020, 5, 1107–1123.
Han, C.; Zhu, X. L.; Martin, J. S.; Lin, Y. X.; Spears, S.; Yan, Y. Recent progress in engineering metal halide perovskites for efficient visible-light-driven photocatalysis. ChemSusChem 2020, 13, 4005–4025.
Que, M. D.; Zhao, Y.; Yang, Y. W.; Pan, L. K.; Lei, W. Y.; Cai, W. H.; Yuan, H. D.; Chen, J.; Zhu, G. Q. Anchoring of formamidinium lead bromide quantum dots on Ti3C2 nanosheets for efficient photocatalytic reduction of CO2. ACS Appl. Mater. Interfaces 2021, 13, 6180–6187.
Li, L.; Zhang, Z. J.; Ding, C.; Xu, J. Y. Boosting charge separation and photocatalytic CO2 reduction of CsPbBr3 perovskite quantum dots by hybridizing with P3HT. Chem. Eng. J. 2021, 419, 129543.
Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.
Huang, H. W.; Zhao, J. W.; Du, Y. J.; Zhou, C.; Zhang, M. L.; Wang, Z.; Weng, Y. X.; Long, J. L.; Hofkens, J.; Steele, J. A. et al. Direct Z-scheme heterojunction of semicoherent FAPbBr3/Bi2WO6 interface for photoredox reaction with large driving force. ACS Nano 2020, 14, 16689–16697.
Wang, J. C.; Wang, J.; Li, N. Y.; Du, X. Y.; Ma, J.; He, C. H.; Li, Z. Q. Direct Z-scheme 0D/2D heterojunction of CsPbBr3 quantum dots/Bi2WO6 nanosheets for efficient photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2020, 12, 31477–31485.
Mu, Y. F.; Zhang, W.; Dong, G. X.; Su, K.; Zhang, M.; Lu, T. B. Ultrathin and small-size graphene oxide as an electron mediator for perovskite-based Z-scheme system to significantly enhance photocatalytic CO2 reduction. Small 2020, 16, 2002140.
Jiang, Y.; Liao, J. F.; Chen, H. Y.; Zhang, H. H.; Li, J. Y.; Wang, X. D.; Kuang, D. B. All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction. Chem 2020, 6, 766–780.
Wang, X. D.; He, J.; Li, J. Y.; Lu, G.; Dong, F.; Majima, T.; Zhu, M. S. Immobilizing perovskite CsPbBr3 nanocrystals on black phosphorus nanosheets for boosting charge separation and photocatalytic CO2 reduction. Appl. Catal. B: Environ 2020, 277, 119230.
Ou, M.; Tu, W. G.; Yin, S. M.; Xing, W. N.; Wu, S. Y.; Wang, H. J.; Wan, S. P.; Zhong, Q.; Xu, R. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 13570–13574.
Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.
Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.
Dong, G. X.; Zhang, W.; Mu, Y. F.; Su, K.; Zhang, M.; Lu, T. B. A halide perovskite as a catalyst to simultaneously achieve efficient photocatalytic CO2 reduction and methanol oxidation. Chem. Commun. 2020, 56, 4664–4667.
Shyamal, S.; Dutta, S. K.; Pradhan, N. Doping iron in CsPbBr3 perovskite nanocrystals for efficient and product selective CO2 reduction. J. Phys. Chem. Lett. 2019, 10, 7965–7969.
Mu, Y. F.; Zhang, W.; Guo, X. X.; Dong, G. X.; Zhang, M.; Lu, T. B. Water-tolerant lead halide perovskite nanocrystals as efficient photocatalysts for visible-light-driven CO2 reduction in pure water. ChemSusChem 2019, 12, 4769–4774.
Huang, G. G.; Wang, C. L.; Xu, S. H.; Zong, S. F.; Lu, J.; Wang, Z. Y.; Lu, C. G.; Cui, Y. P. Postsynthetic doping of MnCl2 molecules into preformed CsPbBr3 perovskite nanocrystals via a halide exchange-driven cation exchange. Adv. Mater. 2017, 29, 1700095.
Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.
Wu, L. Y.; Zhang, M. R.; Feng, Y. X.; Zhang, W.; Zhang, M.; Lu, T. B. Two-dimensional metal halide perovskite nanosheets for efficient photocatalytic CO2 reduction. Sol. RRL 2021, 5, 2100263.
Wheeler, L. M.; Anderson, N. C.; Bliss, T. S.; Hautzinger, M. P.; Neale, N. R. Dynamic evolution of 2D layers within perovskite nanocrystals via salt pair extraction and reinsertion. J. Phys. Chem. C 2018, 122, 14029–14038.
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.
Li, J. H.; Xu, L. M.; Wang, T.; Song, J. Z.; Chen, J. W.; Xue, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. N. et al. 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 2017, 29, 1603885.
De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.
Lee, J. W.; Kim, H. S.; Park, N. G. Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 2016, 49, 311–319.
Zhang, W.; Saliba, M.; Moore, D. T.; Pathak, S. K.; Hörantner, M. T.; Stergiopoulos, T.; Stranks, S. D.; Eperon, G. E.; Alexander-Webber, J. A.; Abate, A. et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 2015, 6, 6142.
Zhao, H.; Han, Y.; Xu, Z.; Duan, C. Y.; Yang, S. M.; Yuan, S. M.; Yang, Z.; Liu, Z. K.; Liu, S. Z. A novel anion doping for stable CsPbI2Br perovskite solar cells with an efficiency of 15.56% and an open circuit voltage of 1.30 V. Adv. Energy Mater. 2019, 9, 1902279.
Yang, D. D.; Li, X. M.; Wu, Y.; Wei, C. T.; Qin, Z. Y.; Zhang, C. F.; Sun, Z. G.; Li, Y. L.; Wang, Y.; Zeng, H. B. Surface halogen compensation for robust performance enhancements of CsPbX3 perovskite quantum dots. Adv. Opt. Mater. 2019, 7, 1900276.
Gao, D.; Qiao, B.; Xu, Z.; Song, D. D.; Song, P. J.; Liang, Z. Q.; Shen, Z. H.; Cao, J. Y.; Zhang, J. J.; Zhao, S. L. Postsynthetic, reversible cation exchange between Pb2+ and Mn2+ in cesium lead chloride perovskite nanocrystals. J. Phys. Chem. C 2017, 121, 20387–20395.
Grosvenor, A. P.; Biesinger, M. C.; Smart, R. S. C.; McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771–1779.
Hills-Kimball, K.; Pérez, M. J.; Nagaoka, Y.; Cai, T.; Yang, H. J.; Davis, A. H.; Zheng, W. W.; Chen, O. Ligand engineering for Mn2+ doping control in CsPbCl3 perovskite nanocrystals via a quasi-solid-solid cation exchange reaction. Chem. Mater. 2020, 32, 2489–2500.
Yong, Z. J.; Guo, S. Q.; Ma, J. P.; Zhang, J. Y.; Li, Z. Y.; Chen, Y. M.; Zhang, B. B.; Zhou, Y.; Shu, J.; Gu, J. L. et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J. Am. Chem. Soc. 2018, 140, 9942–9951.
Liu, W. Y.; Lin, Q. L.; Li, H. B.; Wu, K. F.; Robel, I.; Pietryga, J. M.; Klimov, V. I. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 2016, 138, 14954–14961.
Luo, B. B.; Li, F.; Xu, K.; Guo, Y.; Liu, Y.; Xia, Z. G.; Zhang, J. Z. B-Site doped lead halide perovskites: Synthesis, band engineering, photophysics, and light emission applications. J. Mater. Chem. C 2019, 7, 2781–2808.
Wang, J.; Xia, T.; Wang, L.; Zheng, X. S.; Qi, Z. M.; Gao, C.; Zhu, J. F.; Li, Z. Q.; Xu, H. X.; Xiong, Y. J. Enabling visible-light-driven selective CO2 reduction by doping quantum dots: Trapping electrons and suppressing H2 evolution. Angew. Chem., Int. Ed. 2018, 57, 16447–16451.