Journal Home > Volume 15 , Issue 3

The development of high-performance Ir-based catalyst for electrocatalysis of oxygen evolution reaction (OER) in acidic media plays a critical role in realizing the commercialization of polymer electrolyte membrane-based water electrolyzer technology. Here we report a low-Ir core–shell OER electrocatalyst consisting of an intermetallic IrGa (IrGa-IMC) core and a partially oxidized Ir (IrOx) shell. In acidic electrolytes, the IrGa-IMC@IrOx core–shell catalysts exhibit a low overpotential of 272 mV at 10 mA·cm−2 with Ir loading of ~20 µg·cm−2 and a mass activity of 841 A·gIr−1 at 1.52 V, which is 3.6 times greater than that of commercial Ir/C (232 A·gIr−1) catalyst. We understand by the density functional theory (DFT) calculations that the enhanced OER activity of the IrGa-IMC@IrOx catalysts is ascribed to the lifted degeneracy of Ir 5d electron of surface IrOx sites induced by the intermetallic IrGa core, which increases the adsorption capacity of IrOx layer for O and OH binding and eventually lowers the energy barrier of the OER rate-determining steps.


menu
Abstract
Full text
Outline
About this article

Intermetallic IrGa-IrOx core–shell electrocatalysts for oxygen evolution

Show Author's information Lin-Wei Chen1,2,§Fuxiang He3,4,§Ru-Yang Shao1Qiang-Qiang Yan1Peng Yin1Wei-Jie Zeng1Ming Zuo1Lixin He3,4( )Hai-Wei Liang1( )
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China.
Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China

§Lin-Wei Chen and Fuxiang He contributed equally to this work.

Abstract

The development of high-performance Ir-based catalyst for electrocatalysis of oxygen evolution reaction (OER) in acidic media plays a critical role in realizing the commercialization of polymer electrolyte membrane-based water electrolyzer technology. Here we report a low-Ir core–shell OER electrocatalyst consisting of an intermetallic IrGa (IrGa-IMC) core and a partially oxidized Ir (IrOx) shell. In acidic electrolytes, the IrGa-IMC@IrOx core–shell catalysts exhibit a low overpotential of 272 mV at 10 mA·cm−2 with Ir loading of ~20 µg·cm−2 and a mass activity of 841 A·gIr−1 at 1.52 V, which is 3.6 times greater than that of commercial Ir/C (232 A·gIr−1) catalyst. We understand by the density functional theory (DFT) calculations that the enhanced OER activity of the IrGa-IMC@IrOx catalysts is ascribed to the lifted degeneracy of Ir 5d electron of surface IrOx sites induced by the intermetallic IrGa core, which increases the adsorption capacity of IrOx layer for O and OH binding and eventually lowers the energy barrier of the OER rate-determining steps.

Keywords: oxygen evolution reaction, electrocatalysts, IrGa, intermetallics, core−shell

References(55)

1

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

2

Liu, G. Y.; Sheng, Y.; Ager, J. W.; Kraft, M.; Xu, R. Research advances towards large-scale solar hydrogen production from water. Energychem 2019, 1, 100014.

3

Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2016, 16, 57–69.

4

Sardar, K.; Petrucco, E.; Hiley, C. I.; Sharman, J. D. B.; Wells, P. P.; Russell, A. E.; Kashtiban, R. J.; Sloan, J.; Walton, R. I. Water-splitting electrocatalysis in acid conditions using ruthenate-iridate pyrochlores. Angew. Chem., Int. Ed. 2014, 53, 10960–10964.

5

Spöri, C.; Kwan, J. T. H.; Bonakdarpour, A.; Wilkinson, D. P.; Strasser, P. The stability challenges of oxygen evolving catalysts: Towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem., Int. Ed. 2017, 56, 5994–6021.

6

Carmo, M.; Fritz, D. L.; Merge, J.; Stolten, D. A comprehensive review on pem water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934.

7

Chen, Y. B.; Li, H. Y.; Wang, J. X.; Du, Y. H.; Xi, S. B.; Sun, Y. M.; Sherburne, M.; Ager III, J. W.; Fisher, A. C.; Xu, Z. J. Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat. Commun. 2019, 10, 572.

8

Li, Q.; Li, X. R.; Gu, J. W.; Li, Y. L.; Tian, Z. Q.; Pang, H. Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. Nano Res. 2021, 14, 1405–1412.

9

Li, D. D.; Xu, H. Q.; Jiao, L.; Jiang, H. L. Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities. Energychem 2019, 1, 100005.

10

Guo, X. T.; Zheng, S. S.; Luo, Y. Q.; Pang, H. Synthesis of confining cobalt nanoparticles within SiOx/nitrogen-doped carbon framework derived from sustainable bamboo leaves as oxygen electrocatalysts for rechargeable Zn-air batteries. Chem. Eng. J. 2020, 401, 126005.

11

Bai, Y.; Zhang, G. X.; Zheng, S. S.; Li, Q.; Pang, H.; Xu, Q. Pyridine-modulated Ni/Co bimetallic metal-organic framework nanoplates for electrocatalytic oxygen evolution. Sci. China Mater. 2021, 64, 137–148.

12

Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.

13

Paoli, E. A.; Masini, F.; Frydendal, R.; Deiana, D.; Schlaup, C.; Malizia, M.; Hansen, T. W.; Horch, S.; Stephens, I. E. L.; Chorkendorff, I. Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles. Chem. Sci. 2015, 6, 190–196.

14

Lettenmeier, P.; Wang, L.; Golla-Schindler, U.; Gazdzicki, P.; Cañas, N. A.; Handl, M.; Hiesgen, R.; Hosseiny, S. S.; Gago, A. S.; Friedrich, K. A. Nanosized IrOx–Ir catalyst with relevant activity for anodes of proton exchange membrane electrolysis produced by a cost-effective procedure. Angew. Chem., Int. Ed. 2016, 55, 742–746.

15

Laha, S.; Lee, Y.; Podjaski, F.; Weber, D.; Duppel, V.; Schoop, L. M.; Pielnhofer, F.; Scheurer, C.; Müller, K.; Starke, U. et al. Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium. Adv. Energy Mater. 2019, 9, 1803795.

16

Zagalskaya, A.; Alexandrov, V. Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2. ACS Catal. 2020, 10, 3650–3657.

17

Kötz, R.; Stucki, S.; Scherson, D.; Kolb, D. M. In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid media. J. Electroanal. Chem. Interfacial Electrochem. 1984, 172, 211–219.

18

Wohlfahrt-Mehrens, M.; Heitbaum, J. Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. J. Electroanal. Chem. Interfacial Electrochem. 1987, 237, 251–260.

19

Casalongue, H. G. S.; Ng, M. L.; Kaya, S.; Friebel, D.; Ogasawara, H.; Nilsson, A. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7169–7172.

20

Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal. 2012, 2, 1765–1772.

21

Nong, H. N.; Reier, T.; Oh, H. S.; Gliech, M.; Paciok, P.; Vu, T. H. T.; Teschner, D.; Heggen, M.; Petkov, V.; Schlögl, R. et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nat. Catal. 2018, 1, 841–851.

22

Kwon, T.; Hwang, H.; Sa, Y. J.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Cobalt assisted synthesis of IrCu hollow octahedral nanocages as highly active electrocatalysts toward oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1604688.

23

Shang, C. Y.; Cao, C.; Yu, D. Y.; Yan, Y.; Lin, Y. T.; Li, H. L.; Zheng, T. T.; Yan, X. P.; Yu, W. C.; Zhou, S. M. et al. Electron correlations engineer catalytic activity of pyrochlore iridates for acidic water oxidation. Adv. Mater. 2019, 31, 1805104.

24

Greeley, J.; Nørskov, J. K. A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys. Surf. Sci. 2005, 592, 104–111.

25

Xiao, W. P.; Lei, W.; Gong, M. X.; Xin, H. L.; Wang, D. L. Recent advances of structurally ordered intermetallic nanoparticles for electrocatalysis. ACS Catal. 2018, 8, 3237–3256.

26

Rößner, L.; Armbrüster, M. Electrochemical energy conversion on intermetallic compounds: A review. ACS Catal. 2019, 9, 2018–2062.

27

Nogués, J.; Apiñaniz, E.; Sort, J.; Amboage, M.; d'Astuto, M.; Mathon, O.; Puzniak, R.; Fita, I.; Garitaonandia, J. S.; Suriñach, S. et al. Volume expansion contribution to the magnetism of atomically disordered intermetallic alloys. Phys. Rev. B 2006, 74, 024407.

28

Li, J. R.; Sharma, S.; Liu, X. M.; Pan, Y. T.; Spendelow, J. S.; Chi, M. F.; Jia, Y. K.; Zhang, P.; Cullen, D. A.; Xi, Z. et al. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule 2019, 3, 124–135.

29

Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

30

Chung, D. Y.; Jun, S. W.; Yoon, G.; Kwon, S. G.; Shin, D. Y.; Seo, P.; Yoo, J. M.; Shin, H.; Chung, Y. H.; Kim, H. et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 15478–15485.

31

Zhang, N.; Shao, Q.; Xiao, X. H.; Huang, X. Q. Advanced catalysts derived from composition-segregated platinum–nickel nanostructures: New opportunities and challenges. Adv. Funct. Mater. 2019, 29, 1808161.

32

Li, P. F.; Liu, X. H.; Chen, M. H.; Lin, P. Z.; Ren, X. G.; Lin, L.; Yang, C.; He, L. X. Large-scale ab initio simulations based on systematically improvable atomic basis. Comput. Mater. Sci. 2016, 112, 503–517.

33

Liu, X. H.; Chen, M. H.; Li, P. F.; Shen, Y.; Ren, X. G.; Guo, G. C.; He, L. X. Introduction to first-principles simulation package ABACUS based on systematically improvable atomic orbitals. Acta Phys. Sin. 2015, 64, 187104.

34

Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539.

35

Schlipf, M.; Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 2015, 196, 36–44.

36

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martinez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Norskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. Chemcatchem 2011, 3, 1159–1165.

37

Yang, L.; Wu, Y. X.; Wu, F.; Zhao, Y.; Zhuo, Z. W.; Wang, Z. W.; Li, X. Y.; Luo, Y.; Jiang, J. Emerging linear activity trend in the oxygen evolution reaction with dual-active-sites mechanism. J. Mater. Chem. A 2020, 8, 20946–20952.

38

Smidstrup, S.; Pedersen, A.; Stokbro, K.; Jónsson, H. Improved initial guess for minimum energy path calculations. J. Chem. Phys. 2014, 140, 214106.

39

Larsen, A. H.; Mortensen, J. J.; Blomqvist, J.; Castelli, I. E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, M. N.; Hammer, B.; Hargus, C. et al. The atomic simulation environment—A Python library for working with atoms. J. Phys. Condens. Matter 2017, 29, 273002.

40

Yan, Y. C.; Du, J. S.; Gilroy, K. D.; Yang, D. R.; Xia, Y. N.; Zhang, H. Intermetallic nanocrystals: Syntheses and catalytic applications. Adv. Mater. 2017, 29, 1605997.

41

Song, P. Y.; Wu, Z. Y.; Shen, X. Y.; Kang, J. Y.; Fang, Z. L.; Zhang, T. Y. Self-consistent growth of single-crystalline (2̄01)β-Ga2O3 nanowires using a flexible GaN seed nanocrystal. CrystEngComm 2017, 19, 625–631.

42

Nong, H. N.; Gan, L.; Willinger, E.; Teschner, D.; Strasser, P. IrOx core–shell nanocatalysts for cost- and energy-efficient electrochemical water splitting. Chem. Sci. 2014, 5, 2955–2963.

43

Reier, T.; Teschner, D.; Lunkenbein, T.; Bergmann, A.; Selve, S.; Kraehnert, R.; Schlögl, R.; Strasser, P. Electrocatalytic oxygen evolution on iridium oxide: Uncovering catalyst-substrate interactions and active iridium oxide species. J. Electrochem. Soc. 2014, 161, F876–F882.

44

De, Faria L. A.; Boodts, J. F. C.; Trasatti, S. Electrocatalytic properties of ternary oxide mixtures of composition Ru0.3Ti(0.7−x)CexO2: Oxygen evolution from acidic solution. J. Appl. Electrochem. 1996, 26, 1195–1199.

45

Bockris, J. O. Kinetics of activation controlled consecutive electrochemical reactions: Anodic evolution of oxygen. J. Chem. Phys. 1956, 24, 817–827.

46

Kim, Y. T.; Lopes, P. P.; Park, S. A.; Lee, A. Y.; Lim, J.; Lee, H.; Back, S.; Jung, Y.; Danilovic, N.; Stamenkovic, V. et al. Balancing activity, stability and conductivity of nanoporous core–shell iridium/iridium oxide oxygen evolution catalysts. Nat. Commun. 2017, 8, 1449.

47

Jovanovič, P.; Hodnik, N.; Ruiz-Zepeda, F.; Arčon, I.; Jozinović, B.; Zorko, M.; Bele, M.; Šala, M.; Šelih, V. S.; Hočevar, S. et al. Electrochemical dissolution of iridium and iridium oxide particles in acidic media: Transmission electron microscopy, electrochemical flow cell coupled to inductively coupled plasma mass spectrometry, and X-ray absorption spectroscopy study. J. Am. Chem. Soc. 2017, 139, 12837–12846.

48

Ping, Y.; Nielsen, R. J.; Goddard III, W. A. The reaction mechanism with free energy barriers at constant potentials for the oxygen evolution reaction at the IrO2 (110) surface. J. Am. Chem. Soc. 2017, 139, 149–155.

49

Lin, Y. C.; Tian, Z. Q.; Zhang, L. J.; Ma, J. Y.; Jiang, Z.; Deibert, B. J.; Ge, R. X.; Chen, L. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 2019, 10, 162.

50

Gao, J. J.; Xu, C. Q.; Hung, S. F.; Liu, W.; Cai, W. Z.; Zeng, Z. P.; Jia, C. M.; Chen, H. M.; Xiao, H.; Li, J. et al. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J. Am. Chem. Soc. 2019, 141, 3014–3023.

51

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

52

Huang, X.; Wang, J.; Tao, H. B.; Tian, H.; Xu, H. An essential descriptor for the oxygen evolution reaction on reducible metal oxide surfaces. Chem. Sci. 2019, 10, 3340–3345.

53

Yang, L.; Yu, G. T.; Ai, X.; Yan, W. S.; Duan, H. L.; Chen, W.; Li, X. T.; Wang, T.; Zhang, C. H.; Huang, X. R. et al. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat. Commun. 2018, 9, 5236.

54

Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

55

Sun, W.; Song, Y.; Gong, X. Q.; Cao, L. M.; Yang, J. An efficiently tuned d-orbital occupation of IrO2 by doping with Cu for enhancing the oxygen evolution reaction activity. Chem. Sci. 2015, 6, 4993–4999.

Publication history
Copyright
Acknowledgements

Publication history

Received: 12 June 2021
Revised: 23 July 2021
Accepted: 26 July 2021
Published: 29 August 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We acknowledge the funding support from the National Key Research and Development Program of China (No. 2018YFA0702001), the National Natural Science Foundation of China (Nos. 22071225 and 11774327), the Fundamental Research Funds for the Central Universities (No. WK2060190103), and the Joint Funds from Hefei National Synchrotron Radiation Laboratory (No. KY2060000175), and the support by “the Recruitment Program of Thousand Youth Talents”.

Return