AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent progress of flexible electronics by 2D transition metal dichalcogenides

Lu Zheng1,2Xuewen Wang1,2( )Hanjun Jiang1Manzhang Xu1,2Wei Huang1,2( )Zheng Liu3( )
Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi’an 710072, China
Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an 710072, China
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
Show Author Information

Graphical Abstract

Abstract

Flexible electronics is the research field with interdisciplinary crossing and integration. It shows the promising advantages of novel device configurations, low-cost and low-power consumption due to their flexible and soft characteristics. Atomic layered two-dimensional (2D) materials especially transition metal dichalcogenides, have triggered great interest in ultra-thin 2D flexible electronic devices and optoelectronic devices because of their direct and tunable bandgaps, excellent electrical, optical, mechanical, and thermal properties. This review aims to provide the recent progress in 2D TMDs and their applications in flexible electronics. The fundamental electrical properties and mechanical properties of materials, flexible device configurations, and their performance in transistors, sensors, and photodetectors are thoroughly discussed. At last, some perspectives are given on the open challenges and prospects for 2D TMDs flexible electronic devices and new device opportunities.

References

1

Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

2

Sun, Y.; Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 2007, 19, 1897–1916.

3

Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

4

Kim, S. J.; Choi, K.; Lee, B.; Kim, Y.; Hong, B. H. Materials for flexible, stretchable electronics: Graphene and 2D materials. Annu. Rev. Mater. Res. 2015, 45, 63–84.

5

Park, S.; Zhu, W. N.; Akinwande, D. Progress in flexible 2D nanoelectronics. ECS Trans. 2017, 77, 15–22.

6

Semple, J.; Georgiadou, D. G.; Wyatt-Moon, G.; Gelinck, G.; Anthopoulos, T. D. Flexible diodes for radio frequency (RF) electronics: A materials perspective. Semicond. Sci. Technol. 2017, 32, 123002.

7

Chen, D.; Pei, Q. B. Electronic muscles and skins: A review of soft sensors and actuators. Chem. Rev. 2017, 117, 11239–11268.

8

Liang, J. J.; Tong, K.; Sun, H. B.; Pei, Q. B. Intrinsically stretchable field-effect transistors. MRS Bull. 2017, 42, 131–137.

9

Pu, J.; Li, L. J.; Takenobu, T. Flexible and stretchable thin-film transistors based on molybdenum disulphide. Phys. Chem. Chem. Phys. 2014, 16, 14996–15006.

10

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

11

Gao, L. Flexible device applications of 2D semiconductors. Small 2017, 13, 1603994.

12

Liu, X. H.; Ma, T. T.; Pinna, N.; Zhang, J. Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 2017, 27, 1702168.

13

Zhou, Y.; Zhang, M. X.; Guo, Z. N.; Miao, L. L.; Han, S. T.; Wang, Z. Y.; Zhang, X. W.; Zhang, H.; Peng, Z. C. Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Mater. Horiz. 2017, 4, 997–1019.

14

Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

15

Pei, Y. F.; Chen, R.; Xu, H.; He, D.; Jiang, C. Z.; Li, W. Q.; Xiao, X. H. Recent progress about 2D metal dichalcogenides: Synthesis and application in photodetectors. Nano Res. 2021, 14, 1819–1839.

16

Zeng, S. F.; Tang, Z. W.; Liu, C. S.; Zhou, P. Electronics based on two-dimensional materials: Status and outlook. Nano Res. 2021, 14, 1752–1767.

17

Li, N.; Wang, Q. Q.; Shen, C.; Wei, Z.; Yu, H.; Zhao, J.; Lu, X. B.; Wang, G. L.; He, C. L.; Xie, L. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 2020, 3, 711–717.

18

Ye, M. X.; Zhang, D. Y.; Yap, Y. K. Recent advances in electronic and optoelectronic devices based on two-dimensional transition metal dichalcogenides. Electronics 2017, 6, 43.

19

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

20

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

21

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 2016, 10, 216–226.

22

Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002.

23

Wei, Z.; Wang, Q. Q.; Li, L.; Yang, R.; Zhang, G. Y. Monolayer MoS2 epitaxy. Nano Res. 2021, 14, 1598–1608.

24

Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469.

25

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

26

Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130.

27

Cui, C. J.; Xue, F.; Hu, W. J.; Li, L. J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2018, 2, 18.

28
Kolobov, A. V.; Tominaga, J. Two-Dimensional Transition-Metal Dichalcogenides; Springer International Publishing: Switzerland, 2016.
29

Kooi, B. J.; Noheda, B. Ferroelectric chalcogenides—Materials at the edge. Science 2016, 353, 221–222.

30

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

31

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically ThinMoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

32

Kormányos, A.; Burkard, G.; Gmitra, M.; Fabian, J.; Zólyomi, V.; Drummond, N. D.; Fal’ko, V. Corrigendum: k.p theory for two-dimensional transition metal dichalcogenide semiconductors (2015 2D Mater. 2 022001) . 2D Mater. 2015, 2, 049501.

33

Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te) . Phys. Rev. B 2012, 85, 033305.

34

Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.

35

Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F. Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

36

Li, Y. H.; Yu, C. B.; Gan, Y. Y.; Jiang, P.; Yu, J. X.; Ou, Y.; Zou, D. F.; Huang, C.; Wang, J. H.; Jia, T. T. et al. Mapping the elastic properties of two-dimensional MoS2 via bimodal atomic force microscopy and finite element simulation. npj Comput. Mater. 2018, 4, 49.

37

Chen, Y. F.; Xi, J. Y.; Dumcenco, D. O.; Liu, Z.; Suenaga, K.; Wang, D.; Shuai, Z. G.; Huang, Y. S.; Xie, L. M. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 2013, 7, 4610–4616.

38

Iguiñiz, N.; Frisenda, R.; Bratschitsch, R.; Castellanos-Gomez, A. Revisiting the buckling metrology method to determine the young's modulus of 2D materials. Adv. Mater. 2019, 31, 1807150.

39

Gusakova, J.; Wang, X.; Shiau, L.; Krivosheeva, A.; Shaposhnikov, V.; Borisenko, V.; Gusakov, V.; Tay, B. Electronic properties of bulk and monolayer TMDs: Theoretical study within DFT framework (GVJ-2e method). Phys. Status Solidi A 2017, 214, 1700218.

40

Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576–5580.

41

Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F. M. Anomalous Raman spectra and thickness dependent electronic properties of WSe2. Phys. Rev. B 2013, 87, 165409.

42

Lin, Y. F.; Xu, Y.; Wang, S. T.; Li, S. L.; Yamamoto, M.; Aparecido-Ferreira, A.; Li, W. W.; Sun, H. B.; Nakaharai, S.; Jian, W. B. et al. Ambipolar MoTe2 transistors and their applications in logic circuits. Adv. Mater. 2014, 26, 3263–3269.

43

Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D. H.; Sung, H. J.; Kan, M.; Kang, H.; Hwang, J. Y.; Kim, S. W.; Yang, H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11, 482–486.

44

Wu, X. J.; Xu, Z. P.; Zeng, X. C. Single-walled MoTe2 nanotubes. Nano Lett. 2007, 7, 2987–2992.

45

Lee, C. H.; Silva, E. C.; Calderin, L.; Nguyen, M. A. T.; Hollander, M. J.; Bersch, B.; Mallouk, T. E.; Robinson, J. A. Tungsten ditelluride: A layered semimetal. Sci. Rep. 2015, 5, 10013.

46

Dawson, W. G.; Bullett, D. W. Electronic structure and crystallography of MoTe2 and WTe2. J. Phys. C 1987, 20, 6159–6174.

47

Kumar, A.; Ahluwalia, P. K. Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: New direct band gap semiconductors. Eur. Phys. J. B 2012, 85, 186.

48

Lee, J.; Ye, F.; Wang, Z. H.; Yang, R.; Hu, J.; Mao, Z. Q.; Wei, J.; Feng, P. X. L. Single- and few-layer WTe2 and their suspended nanostructures: Raman signatures and nanomechanical resonances. Nanoscale 2016, 8, 7854–7860.

49

Xu, K.; Wang, Z. X.; Wang, F.; Huang, Y.; Wang, F. M.; Yin, L.; Jiang, C.; He, J. Ultrasensitive phototransistors based on few-layered HfS2. Adv. Mater. 2015, 27, 7881–7887.

50

Kanazawa, T.; Amemiya, T.; Ishikawa, A.; Upadhyaya, V.; Tsuruta, K.; Tanaka, T.; Miyamoto, Y. Few-layer HfS2 transistors. Sci. Rep. 2016, 6, 22277.

51

Kaur, H.; Yadav, S.; Srivastava, A. K.; Singh, N.; Rath, S.; Schneider, J. J.; Sinha, O. P.; Srivastava, R. High-yield synthesis and liquid-exfoliation of two-dimensional belt-like hafnium disulphide. Nano Res. 2018, 11, 343–353.

52

Kang, J.; Sahin, H.; Peeters, F. M. Mechanical properties of monolayer sulphides: A comparative study between MoS2, HfS2 and TiS3. Phys. Chem. Chem. Phys. 2015, 17, 27742–27749.

53

Mleczko, M. J.; Zhang, C. F.; Lee, H. R.; Kuo, H. H.; Magyari-Köpe, B.; Moore, R. G.; Shen, Z. X.; Fisher, I. R.; Nishi, Y.; Pop, E. HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-κ oxides. Sci. Adv. 2017, 3, e1700481.

54

Zhao, Q. Y.; Guo, Y. H.; Si, K. Y.; Ren, Z. Y.; Bai, J. T.; Xu, X. L. Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. Phys. Status Solidi B 2017, 254, 1700033.

55

Li, Y.; Kang, J.; Li, J. B. Indirect-to-direct band gap transition of the ZrS2 monolayer by strain: First-principles calculations. RSC Adv. 2014, 4, 7396–7401.

56

Si, Y.; Wu, H. Y.; Yang, H. M.; Huang, W. Q.; Yang, K.; Peng, P.; Huang, G. F. Dramatically enhanced visible light response of monolayer ZrS2 via non-covalent modification by double-ring tubular B20 cluster. Nanoscale Res. Lett. 2016, 11, 495.

57

Guo, Y. Z.; Robertson, J. Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures. Appl. Phys. Lett. 2016, 108, 233104.

58

Lu, H. C.; Guo, Y. Z.; Robertson, J. Band edge states, intrinsic defects, and dopants in monolayer HfS2 and SnS2. Appl. Phys. Lett. 2018, 112, 062105.

59

He, X. C.; Shen, H. L. Ab initio calculations of band structure and thermophysical properties for SnS2 and SnSe2. Phys. B 2012, 407, 1146–1152.

60

Ling, C. Y.; Huang, Y. C.; Liu, H.; Wang, S. F.; Fang, Z.; Ning, L. X. Mechanical properties, electronic structures, and potential applications in lithium ion batteries: A first-principles study toward SnSe2 nanotubes. J. Phys. Chem. C 2014, 118, 28291–28298.

61

Aslan, O. B.; Chenet, D A.; van der Zande, A. M.; Hone, J. C.; Heinz, T. F. Linearly polarized excitons in single- and few-layer ReS2 crystals. ACS Photon. 2016, 3, 96–101.

62

Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y. S.; Ho, C. H.; Yan, J. Y. et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 2014, 5, 3252.

63

Wang, H. F.; Liu, E. F.; Wang, Y.; Wan, B.; Ho, C. H.; Miao, F.; Wan, X. G. Cleavage tendency of anisotropic two-dimensional materials: ReX2 (X= S, Se) and WTe2. Phys. Rev. B 2017, 96, 165418.

64

Wolverson, D.; Crampin, S.; Kazemi, A. S.; Ilie, A.; Bending, S. J. Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 2014, 8, 11154–11164.

65

Jariwala, B.; Voiry, D.; Jindal, A.; Chalke, B. A.; Bapat, R.; Thamizhavel, A.; Chhowalla, M.; Deshmukh, M.; Bhattacharya, A. Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem. Mater. 2016, 28, 3352–3359.

66

Zhu, Z. Y.; Cheng, Y. C.; Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 2011, 84, 153402.

67

Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

68

Habe, T.; Koshino, M. Spin-dependent refraction at the atomic step of transition-metal dichalcogenides. Phys. Rev. B 2015, 91, 201407.

69

Szczęśniak, D.; Ennaoui, A.; Ahzi, S. Complex band structures of transition metal dichalcogenide monolayers with spin–orbit coupling effects. J. Phys.:Condens. Matter 2016, 28, 355301.

70

Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.

71

Wang, H.; Sandoz-Rosado, E. J.; Tsang, S. H.; Lin, J. J.; Zhu, M. M.; Mallick, G.; Liu, Z.; Teo, E. H. T. Elastic properties of 2D ultrathin tungsten nitride crystals grown by chemical vapor deposition. Adv. Funct. Mater. 2019, 29, 1902663.

72

Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; van der Zant, H. S.; Agraït, N.; Rubio-Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 2012, 24, 772–775.

73

Liu, K.; Yan, Q. M.; Chen, M.; Fan, W.; Sun, Y. H.; Suh, J.; Fu, D. Y.; Lee, S.; Zhou, J.; Tongay, S. et al. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 2014, 14, 5097–5103.

74

Song, L.; Ci, L.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

75

Guo, L. L.; Yan, H. M.; Moore, Q.; Buettner, M.; Song, J. H.; Li, L.; Araujo, P. T.; Wang, H. T. Elastic properties of van der Waals epitaxy grown bismuth telluride 2D nanosheets. Nanoscale 2015, 7, 11915–11921.

76

Falin, A.; Cai, Q. R.; Santos, E. J. G.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S. M.; Watanabe, K.; Taniguchi, T. et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 2017, 8, 15815.

77

Rasool, H. I.; Ophus, C.; Klug, W. S.; Zettl, A.; Gimzewski, J. K. Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nat. Commun. 2013, 4, 2811.

78

Cao, G. X.; Gao, H. J. Mechanical properties characterization of two-dimensional materials via nanoindentation experiments. Prog. Mater. Sci. 2019, 103, 558–595.

79

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

80

Lee, G. H.; Cooper, R. C.; An, S. J.; Lee, S.; van der Zande, A.; Petrone, N.; Hammerberg, A. G.; Lee, C.; Crawford, B.; Oliver, W. et al. High-strength chemical-vapor-deposited graphene and grain boundaries. Science 2013, 340, 1073–1076.

81

Castellanos-Gomez, A.; Singh, V.; van der Zant, H. S. J.; Steele, G. A. Mechanics of freely-suspended ultrathin layered materials. Annal. Phys. 2015, 527, 27–44.

82

Jiang, H. J.; Zheng, L.; Liu, Z.; Wang, X. W. Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat 2020, 2, 1077–1094.

83

Akinwande, D.; Brennan, C. J.; Bunch, J. S.; Egberts, P.; Felts, J. R.; Gao, H. J.; Huang, R.; Kim, J. S.; Li, T.; Li, Y. et al. A review on mechanics and mechanical properties of 2D materials—Graphene and beyond. Extreme Mech. Lett. 2017, 13, 42–77.

84

Feng, J.; Qian, X. F.; Huang, C. W.; Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 2012, 6, 866–872.

85

Qi, J. J.; Lan, Y. W.; Stieg, A. Z.; Chen, J. H.; Zhong, Y. L.; Li, L. J.; Chen, C. D.; Zhang, Y.; Wang, K. L. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat. Commun. 2015, 6, 7430.

86

Roldán, R.; Castellanos-Gomez, A.; Cappelluti, E.; Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J. Phys. :Condens. Matter 2015, 27, 313201.

87

Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366.

88

Ghorbani-Asl, M.; Borini, S.; Kuc, A.; Heine, T. Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys. Rev. B 2013, 87, 235434.

89

Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X. L.; Zhou, W.; Yu, T.; Qiu, C. Y.; Birdwell, A. G.; Crowne, F. J. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 2014, 5, 5246.

90

Cheng, R.; Jiang, S.; Chen, Y.; Liu, Y.; Weiss, N.; Cheng, H. C.; Wu, H.; Huang, Y.; Duan, X. F. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 2014, 5, 5143.

91

Blees, M. K.; Barnard, A. W.; Rose, P. A.; Roberts, S. P.; McGill, K. L.; Huang, P. Y.; Ruyack, A. R.; Kevek, J. W.; Kobrin, B.; Muller, D. A. et al. Graphene kirigami. Nature 2015, 524, 204–207.

92

He, K. L.; Poole, C.; Mak, K. F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931–2936.

93

Hui, Y. Y.; Liu, X. F.; Jie, W. J.; Chan, N. Y.; Hao, J. H.; Hsu, Y. T.; Li, L. J.; Guo, W. L.; Lau, S. P. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 2013, 7, 7126–7131.

94

Scalise, E.; Houssa, M.; Pourtois, G.; Afanas’ev, V.; Stesmans, A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 2012, 5, 43–48.

95

Wang, Y. L.; Cong, C. X.; Yang, W. H.; Shang, J. Z.; Peimyoo, N.; Chen, Y.; Kang, J. Y.; Wang, J. P.; Huang, W.; Yu, T. Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562–2572.

96

Zhang, Q. H.; Chang, Z. Y.; Xu, G. Z.; Wang, Z. Y.; Zhang, Y. P.; Xu, Z. Q.; Chen, S. J.; Bao, Q. L.; Liu, J. Z.; Mai, Y. W. et al. Strain relaxation of monolayer WS2 on plastic substrate. Adv. Funct. Mater. 2016, 26, 8707–8714.

97

Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474.

98

Zhu, H. Y.; Wang, Y.; Xiao, J.; Liu, M.; Xiong, S. M.; Wong, Z. J.; Ye, Z. L.; Ye, Y.; Yin, X. B.; Zhang, X. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 2014, 10, 151–155.

99

Wang, X. W.; He, X. X.; Zhu, H. F.; Sun, L. F.; Fu, W.; Wang, X. L.; Hoong, L. C.; Wang, H.; Zeng, Q. S.; Zhao, W. et al. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films. Sci. Adv. 2016, 2, e1600209.

100

Kim, S. K.; Bhatia, R.; Kim, T. H.; Seol, D.; Kim, J. H.; Kim, H.; Seung, W.; Kim, Y.; Lee, Y. H.; Kim, S. W. Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators. Nano Energy 2016, 22, 483–489.

101

Mohanta, M. K.; Sarkar, A. D. Tweaking the physics of interfaces between monolayers of buckled cadmium sulfide for a superhigh piezoelectricity, excitonic solar cell efficiency, and thermoelectricity. ACS Appl. Mater. Interfaces 2020, 12, 18123–18137.

102

Lee, G. H.; Yu, Y. J.; Cui, X.; Petrone, N.; Lee, C. H.; Choi, M. S.; Lee, D. Y.; Lee, C.; Yoo, W. J.; Watanabe, K. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 2013, 7, 7931–7936.

103

Agnihotri, P.; Dhakras, P.; Lee, J. U. Bipolar junction transistors in two-dimensional WSe2 with large current and photocurrent gains. Nano Lett. 2016, 16, 4355–4360.

104

Lin, C. Y.; Zhu, X. D.; Tsai, S. H.; Tsai, S. P.; Lei, S. D.; Shi, Y. M.; Li, L. J.; Huang, S. J.; Wu, W. F.; Yeh, W. K. et al. Atomic-monolayer two-dimensional lateral quasi-heterojunction bipolar transistors with resonant tunneling phenomenon. ACS Nano 2017, 11, 11015–11023.

105

Bai, C. X.; Zou, Y. L.; Lou, W. K.; Chang, K. Pure valley- and spin-entangled states in a MoS2-based bipolar transistor. Phys. Rev. B 2014, 90, 195445.

106

Torres, C. M. Jr.; Lan, Y. W.; Zeng, C. F.; Chen, J. H.; Kou, X. F.; Navabi, A.; Tang, J. S.; Montazeri, M.; Adleman, J. R.; Lerner, M. B. et al. High-current gain two-dimensional MoS2-base hot-electron transistors. Nano Lett. 2015, 15, 7905–7912.

107

Moise, T. S.; Kao, Y. C.; Seabaugh, A. C. Room-temperature operation of a tunneling hot-electron transfer amplifier. Appl. Phys. Lett. 1994, 64, 1138.

108

Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, Y. F.; Ahmed, S.; An, J.; Swan, A. K.; Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 2011, 5, 6916–6924.

109

Salvatore, G. A.; Münzenrieder, N.; Barraud, C.; Petti, L.; Zysset, C.; Büthe, L.; Ensslin, K.; Tröster, G. Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate. ACS Nano 2013, 7, 8809–8815.

110

Gong, Y. J.; Lei, S. D.; Ye, G. L.; Li, B.; He, Y. M.; Keyshar, K.; Zhang, X.; Wang, Q. Z.; Lou, J.; Liu, Z. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015, 15, 6135–6141.

111

Li, F.; Feng, Y. X.; Li, Z. W.; Ma, C.; Qu, J. Y.; Wu, X. P.; Li, D.; Zhang, X. H.; Yang, T. F.; He, Y. Q. et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv. Mater. 2019, 31, 1901351.

112

Wang, F. L.; Stepanov, P.; Gray, M.; Lau, C. N.; Itkis, M. E.; Haddon, R. C. Ionic liquid gating of suspended MoS2 field effect transistor devices. Nano Lett. 2015, 15, 5284–5288.

113

Pu, J.; Yomogida, Y.; Liu, K. K.; Li, L. J.; Iwasa, Y.; Takenobu, T. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 2012, 12, 4013–4017.

114

Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.

115

Pu, J.; Zhang, Y. J.; Wada, Y.; Wang, J. T. W.; Li, L. J.; Iwasa, Y.; Takenobu, T. Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics. Appl. Phys. Lett. 2013, 103, 023505.

116

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

117

Chang, H. Y.; Yang, S. X.; Lee, J.; Tao, L.; Hwang, W. S.; Jena, D.; Lu, N. S.; Akinwande, D. High-performance, highly bendable MoS2 transistors with high-K dielectrics for flexible low-power systems. ACS Nano 2013, 7, 5446–5452.

118

Zhao, J.; Chen, W.; Meng, J. L.; Yu, H.; Liao, M. Z.; Zhu, J. Q.; Yang, R.; Shi, D. X.; Zhang, G. Y. Integrated flexible and high-quality thin film transistors based on monolayer MoS2. Adv. Electron. Mater. 2016, 2, 1500379.

119

Rhyee, J. S.; Kwon, J.; Dak, P.; Kim, J. H.; Kim, S. M.; Park, J.; Hong, Y. K.; Song, W. G.; Omkaram, I.; Alam, M. A. et al. High-mobility transistors based on large-area and highly crystalline CVD-grown MoSe2 films on insulating substrates. Adv. Mater. 2016, 28, 2316–2321.

120

Kim, T. Y.; Ha, J.; Cho, K.; Pak, J.; Seo, J.; Park, J.; Kim, J. K.; Chung, S.; Hong, Y.; Lee, T. Transparent large-area MoS2 phototransistors with inkjet-printed components on flexible platforms. ACS Nano 2017, 11, 10273–10280.

121

Kwon, H.; Choi, W.; Lee, D.; Lee, Y.; Kwon, J.; Yoo, B.; Grigoropoulos, C. P.; Kim, S. Selective and localized laser annealing effect for high-performance flexible multilayer MoS2 thin-film transistors. Nano Res. 2014, 7, 1137–1145.

122

Song, W. G.; Kwon, H. J.; Park, J.; Yeo, J.; Kim, M.; Park, S.; Yun, S.; Kyung, K. U.; Grigoropoulos, C. P.; Kim. S. et al. High-performance flexible multilayer MoS2 transistors on solution-based polyimide substrates. Adv. Funct. Mater. 2016, 26, 2426–2434.

123

Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100–103.

124

Funahashi, K.; Pu, J.; Li, M. Y.; Li, L. J.; Iwasa, Y.; Takenobu, T. Large-area WSe2 electric double layer transistors on a plastic substrate. Jpn. J. Appl. Phys. 2015, 54, 06FF06.

125

Qi, H. Y.; Mi, W. T.; Zhao, H. M.; Xue, T.; Yang, Y.; Ren, T. L. A large-scale spray casting deposition method of WS2 films for high-sensitive, flexible and transparent sensor. Mater. Lett. 2017, 201, 161–164.

126

Gong, Y. Y.; Carozo, V.; Li, H. Y.; Terrones, M.; Jackson, T. N. High flex cycle testing of CVD monolayer WS2 TFTs on thin flexible polyimide. 2D Mater. 2016, 3, 021008.

127

Aji, A. S.; Solís-Fernández, P.; Ji, H. G.; Fukuda, K.; Ago, H. High mobility WS2 transistors realized by multilayer graphene electrodes and application to high responsivity flexible photodetectors. Adv. Funct. Mater. 2017, 27, 1703448.

128

Park, J.; Choudhary, N.; Smith, J.; Lee, G.; Kim, M.; Choi, W. Thickness modulated MoS2 grown by chemical vapor deposition for transparent and flexible electronic devices. Appl. Phys. Lett. 2015, 106, 012104.

129

Yoon, J.; Park, W.; Bae, G. Y.; Kim, Y.; Jang, H. S.; Hyun, Y.; Lim, S. K.; Kahng, Y. H.; Hong, W. K.; Lee, B. H. et al. Flexible electronics: Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 2013, 9, 3185–3185.

130

Shinde, S. M.; Das, T.; Hoang, A. T.; Sharma, B. K.; Chen, X.; Ahn, J. H. Surface-functionalization-mediated direct transfer of molybdenum disulfide for large-area flexible devices. Adv. Funct. Mater. 2018, 28, 1706231.

131

Chang, H. Y.; Yogeesh, M. N.; Ghosh, R.; Rai, A.; Sanne, A.; Yang, S. X.; Lu, N. S.; Banerjee, S. K.; Akinwande, D. Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime. Adv. Mater. 2016, 28, 1818–1823.

132

Gao, Y.; Liu, Z. B.; Sun, D. M.; Huang, L.; Ma, L. P.; Yin, L. C.; Ma, T.; Zhang, Z. Y.; Ma, X. L.; Peng, L. M. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 2015, 6, 8569.

133

Chamlagain, B.; Li, Q.; Ghimire, N. J.; Chuang, H. J.; Perera, M. M.; Tu, H. G.; Xu, Y.; Pan, M. H.; Xaio, D.; Yan, J. Q. et al. Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate. ACS Nano 2014, 8, 5079–5088.

134

Kim, Y.; Kang, B.; Choi, Y.; Cho, J. H.; Lee, C. Direct synthesis of large-area continuous ReS2 films on a flexible glass at low temperature. 2D Mater. 2017, 4, 025057.

135

Zhang, M.; Li, H.; Xu, J.; Zhu, H.; Chen, L.; Sun, Q. Q.; Zhang, D. W. High-performance ReS2 FET for optoelectronics and flexible electronics applications. IEEE Electron Device Lett. 2019, 40, 123–126.

136

Yoo, G.; Choi, S. L.; Park, S. J.; Lee, K. T.; Lee, S.; Oh, M. S.; Heo, J.; Park, H. J. Flexible and wavelength-selective MoS2 phototransistors with monolithically integrated transmission color filters. Sci. Rep. 2017, 7, 40945.

137

Zhang, K.; Peng, M. Z.; Wu, W.; Guo, J. M.; Gao, G. Y.; Liu, Y. D.; Kou, J. Z.; Wen, R. M.; Lei, Y.; Yu, A. F. et al. A flexible p-CuO/n-MoS2 heterojunction photodetector with enhanced photoresponse by the piezo-phototronic effect. Mater. Horiz. 2017, 4, 274–280.

138

Asad, M.; Salimian, S.; Sheikhi, M. H.; Pourfath, M. Flexible phototransistors based on graphene nanoribbon decorated with MoS2 nanoparticles. Sens. Actuators A:Phys. 2015, 232, 285–291.

139

Wang, Q. Q.; Li, N.; Tang, J.; Zhu, J. Q.; Zhang, Q. H.; Jia, Q.; Lu, Y.; Wei, Z.; Yu, H.; Zhao, Y. C. et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 2020, 20, 7193–7199.

140

Chuang, H. J.; Tan, X. B.; Ghimire, N. J.; Perera, M. M.; Chamlagain, B.; Cheng, M. M. C.; Yan, J. Q.; Mandrus, D.; Tománek, D.; Zhou, Z. X. High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett. 2014, 14, 3594–3601.

141

Elías, A. L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R. T.; Feng, S. M.; Long, A. D.; Hayashi, T.; Kim, Y. A.; Endo, M. et al. Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano 2013, 7, 5235–5242.

142

Chung, J. W.; Ko, Y. H.; Hong, Y. K.; Song, W.; Jung, C.; Tang, H.; Lee, J.; Lee, M. H.; Lee, B. L.; Park, J. I. et al. Flexible nano-hybrid inverter based on inkjet-printed organic and 2D multilayer MoS2 thin film transistor. Org. Electron. 2014, 15, 3038–3042.

143

Das, T.; Chen, X.; Jang, H.; Oh, I. K.; Kim, H.; Ahn, J. H. Highly flexible hybrid CMOS inverter based on Si nanomembrane and molybdenum disulfide. Small 2016, 12, 5720–5727.

144

Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p–n junction with an atomically sharp interface. Science 2015, 349, 524–528.

145

Choi, C.; Lee, Y.; Cho, K. W.; Koo, J. H.; Kim, D. H. Wearable and implantable soft bioelectronics using two-dimensional materials. Acc. Chem. Res. 2019, 52, 73–81.

146

Guo, Y.; Zhong, M. J.; Fang, Z. W.; Wan, P. B.; Yu, G. H. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 2019, 19, 1143–1150.

147

Ko, K. Y.; Lee, S.; Park, K.; Kim, Y.; Woo, W. J.; Kim, D.; Song, J. G.; Park, J.; Kim, J. H.; Lee, Z. et al. High-performance gas sensor using a large-area WS2xSe2–2x alloy for low-power operation wearable applications. ACS Appl. Mater. Interfaces 2018, 10, 34163–34171.

148

Park, Y. J.; Sharma, B. K.; Shinde, S. M.; Kim, M. S.; Jang, B.; Kim, J. H.; Ahn, J. H. All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 2019, 13, 3023–3030.

149

Sarkar, D.; Liu, W.; Xie, X. J.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 2014, 8, 3992–4003.

150

Xiang, P.; Chen, X. F.; Xiao, B. B.; Wang, Z. M. Highly flexible hydrogen boride monolayers as potassium-ion battery anodes for wearable electronics. ACS Appl. Mater. Interfaces 2019, 11, 8115–8125.

151

Yang, H. G.; Xue, T. Y.; Li, F. Y.; Liu, W. T.; Song, Y. L. Graphene: Diversified flexible 2D material for wearable vital signs monitoring. Adv. Mater. Technol. 2019, 4, 1800574.

152

Yang, Y. N.; Shi, L. J.; Cao, Z. R.; Wang, R. R.; Sun, J. Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanoparticle–nanosheet hybrid network. Adv. Funct. Mater. 2019, 29, 1807882.

153

Kim, T. H.; Kim, Y. H.; Park, S. Y.; Kim, S. Y.; Jang, H. W. Two-dimensional transition metal disulfides for chemoresistive gas sensing: Perspective and challenges. Chemosensors 2017, 5, 15.

154

Cho, B.; Hahm, M. G.; Choi, M.; Yoon, J.; Kim, A. R.; Lee, Y. J.; Park, S. G.; Kwon, J. D.; Kim, C. S.; Song, M. et al. Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 2015, 5, 8052.

155

He, Q. Y.; Zeng, Z. Y.; Yin, Z. Y.; Li, H.; Wu, S. X.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 2012, 8, 2994–2999.

156

Guo, H. Y.; Lan, C. Y.; Zhou, Z. F.; Sun, P. H.; Wei, D. P.; Li, C. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 2017, 9, 6246–6253.

157

Kuru, C.; Choi, D.; Kargar, A.; Liu, C. H.; Yavuz, S.; Choi, C.; Jin, S.; Bandaru, P. R. High-performance flexible hydrogen sensor made of WS2 nanosheet–Pd nanoparticle composite film. Nanotechnology 2016, 27, 195501.

158

Feng, W.; Zheng, W.; Gao, F.; Chen, X. S.; Liu, G. B.; Hasan, T.; Cao, W. W.; Hu, P. A. Sensitive electronic-skin strain sensor array based on the patterned two-dimensional α-In2Se3. Chem. Mater. 2016, 28, 4278–4283.

159

Lee, W. S.; Choi, J. Hybrid integration of carbon nanotubes and transition metal dichalcogenides on cellulose paper for highly sensitive and extremely deformable chemical sensors. ACS Appl. Mater. Interfaces 2019, 11, 19363–19371.

160
Guo, S. Q.; Yang, D.; Li, B. C.; Dong, Q.; Li, Z. Y.; Zaghloul, M. E. An artificial intelligent flexible gas sensor based on ultra-large area MoSe2 nanosheet. In 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), Dallas, TX, USA, 2019, pp. 884–887.
161

Cho, B.; Kim, A. R.; Kim, D. J.; Chung, H. S.; Choi, S. Y.; Kwon, J. D.; Park, S. W.; Kim, Y.; Lee, B. H.; Lee, K. H. et al. Two-dimensional atomic-layered alloy junctions for high-performance wearable chemical sensor. ACS Appl. Mater. Interfaces 2016, 8, 19635–19642.

162

Medina, H.; Li, J. G.; Su, T. Y.; Lan, Y. W.; Lee, S. H.; Chen, C. W.; Chen, Y. Z.; Manikandan, A.; Tsai, S. H.; Navabi, A. et al. Wafer-scale growth of WSe2 monolayers toward phase-engineered hybrid WOx/WSe2 films with sub-ppb NOx gas sensing by a low-temperature plasma-assisted selenization process. Chem. Mater. 2017, 29, 1587–1598.

163

Hwang, I.; Kim, J. S.; Cho, S. H.; Jeong, B.; Park, C. Flexible vertical p–n diode photodetectors with thin N-type MoSe2 films solution-processed on water surfaces. ACS Appl. Mater. Interfaces 2018, 10, 34543–34552.

164

Xue, Y. Z.; Zhang, Y. P.; Liu, Y.; Liu, H. T.; Song, J. C.; Sophia, J.; Liu, J. Y.; Xu, Z. Q.; Xu, Q. Y.; Wang, Z. Y. et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano 2016, 10, 573–580.

165

Tamalampudi, S. R.; Lu, Y. Y.; Kumar, U. R.; Sankar, R.; Liao, C. D.; Moorthy, B. K.; Cheng, C. H.; Chou, F. C.; Chen, Y. T. High Performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Lett. 2014, 14, 2800–2806.

166

Pataniya, P.; Zankat, C. K.; Tannarana, M.; Sumesh, C. K.; Narayan, S.; Solanki, G. K.; Patel, K. D.; Pathak, V. M.; Jha, P. K. Paper-based flexible photodetector functionalized by WSe2 nanodots. ACS Appl. Nano Mater. 2019, 2, 2758–2766.

167

Zheng, Z. Q.; Zhang, T. M.; Yao, J.; Zhang, Y.; Xu, J. R.; Yang, G. W. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology 2016, 27, 225501.

168

Yu, W. Z.; Li, S. J.; Zhang, Y. P.; Ma, W. L.; Sun, T.; Yuan, J.; Fu, K.; Bao, Q. L. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 2017, 13, 1700268.

169

Wang, D. G.; Lu, Y.; Meng, J. H.; Zhang, X. W.; Yin, Z. G.; Gao, M. L.; Wang, Y.; Cheng, L. K.; You, J. B.; Zhang, J. C. Remote heteroepitaxy of atomic layered hafnium disulfide on sapphire through hexagonal boron nitride. Nanoscale 2019, 11, 9310–9318.

170

Lei, Y.; Luo, J.; Yang, X. G.; Cai, T.; Qi, R. J.; Gu, L. Y.; Zheng, Z. Thermal evaporation of large-area SnS2 thin films with a UV-to-NIR photoelectric response for flexible photodetector applications. ACS Appl. Mater. Interfaces 2020, 12, 24940–24950.

171

Su, T. Y.; Medina, H.; Chen, Y. Z.; Wang, S. W.; Lee, S. S.; Shih, Y. C.; Chen, C. W.; Kuo, H. C.; Chuang, F. C.; Chueh, Y. L. Phase-engineered PtSe2-layered films by a plasma-assisted selenization process toward all PtSe2-based field effect transistor to highly sensitive, flexible, and wide-spectrum photoresponse photodetectors. Small 2018, 14, 1800032.

172

Yang, C.; Xie, J. Y.; Lou, C. M.; Zheng, W.; Liu, X. H.; Zhang, J. Flexible NO2 sensors based on WSe2 nanosheets with bifunctional selectivity and superior sensitivity under UV activation. Sens. Actuators B:Chem. 2021, 333, 129571.

173

Choi, J. M.; Jang, H. Y.; Kim, A. R.; Kwon, J. D.; Cho, B.; Park, M. H.; Kim, Y. Ultra-flexible and rollable 2D-MoS2/Si heterojunction-based near-infrared photodetector via direct synthesis. Nanoscale 2021, 13, 672–680.

174

Li, A. L.; Chen, Q. X.; Wang, P. P.; Gan, Y.; Qi, T. L.; Wang, P.; Tang, F. D.; Wu, J. Z.; Chen, R.; Zhang, L. Y. et al. Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/graphene/SnS2 p–g–n junctions. Adv. Mater. 2019, 31, 1805656.

175

Roy, T.; Tosun, M.; Cao, X.; Fang, H.; Lien, D. H.; Zhao, P. D.; Chen, Y. Z.; Chueh, Y. L.; Guo, J.; Javey, A. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 2015, 9, 2071–2079.

176

Zhang, K. N.; Zhang, T. N.; Cheng, G. H.; Li, T. X.; Wang, S. X.; Wei, W.; Zhou, X. H.; Yu, W. W.; Sun, Y.; Wang, P. et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 2016, 10, 3852–3858.

177

Rao, G. F.; Wang, X. P.; Wang, Y.; Wangyang, P. H.; Yan, C. Y.; Chu, J. W.; Xue, L. X.; Gong, C. H.; Huang, J. W.; Xiong, J. et al. Two-dimensional heterostructure promoted infrared photodetection devices. InfoMat 2019, 1, 272–288.

178

Zheng, B. Y.; Li, D.; Zhu, C. G.; Lan, J. Y.; Sun, X. X.; Zheng, W. H.; Liu, H. W.; Zhang, X. H.; Zhu, X. L.; Feng, Y. X. et al. Dual-channel type tunable field-effect transistors based on vertical bilayer WS2(1−x)Se2x/SnS2 heterostructures. InfoMat 2020, 2, 752–760.

179

Cheng, R.; Li, D. H.; Zhou, H. L.; Wang, C.; Yin, A. X.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. F. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 2014, 14, 5590–5597.

180

Furchi, M. M.; Pospischil, A.; Libisch, F.; Burgdörfer, J.; Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 2014, 14, 4785–4791.

181

Zhang, J. C.; Huang, Y. C.; Tan, Z. J.; Li, T. R.; Zhang, Y. C.; Jia, K. C.; Lin, L.; Sun, L. Z.; Chen, X. W.; Li, Z. Z. et al. Low-temperature heteroepitaxy of 2D PbI2/graphene for large-area flexible photodetectors. Adv. Mater. 2018, 30, 1803194.

182

Zhang, H. B.; Man, B. Y.; Zhang, Q. Topological crystalline insulator SnTe/Si Vertical heterostructure photodetectors for high-performance near-infrared detection. ACS Appl. Mater. Interfaces 2017, 9, 14067–14077.

183

Qiao, H.; Yuan, J.; Xu, Z. Q.; Chen, C. Y.; Lin, S. H.; Wang, Y. S.; Song, J. C.; Liu, Y.; Khan, Q.; Hoh, H. Y. et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure. ACS Nano 2015, 9, 1886–1894.

184

Sun, H. H.; Jiang, T.; Zang, Y. Y.; Zheng, X.; Gong, Y.; Yan, Y.; Xu, Z. J.; Liu, Y.; Fang, L.; Cheng, X. A. et al. Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures. Nanoscale 2017, 9, 9325–9332.

185

Yang, J.; Yu, W. Z.; Pan, Z. H.; Yu, Q.; Yin, Q.; Guo, L.; Zhao, Y. F.; Sun, T.; Bao, Q. L.; Zhang, K. Ultra-broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity. Small 2018, 14, 1802598.

186

Yao, J. D.; Yang, G. W. Flexible and high-performance all-2D photodetector for wearable devices. Small 2018, 14, 1704524.

187

Park, M.; Park, Y. J.; Chen, X.; Park, Y. K.; Kim, M. S.; Ahn, J. H. MoS2-based tactile sensor for electronic skin applications. Adv. Mater. 2016, 28, 2556–2562.

188

An, C. H.; Xu, Z. H.; Shen, W. F.; Zhang, R. J.; Sun, Z. Y.; Tang, S. J.; Xiao, Y. F.; Zhang, D. H.; Sun, D.; Hu, X. D. et al. The opposite anisotropic piezoresistive effect of ReS2. ACS Nano 2019, 13, 3310–3319.

189

Ahn, C.; Lee, J.; Kim, H. U.; Bark, H.; Jeon, M.; Ryu, G. H.; Lee, Z.; Yeom, G. Y.; Kim, K.; Jung, J. et al. Low-temperature synthesis of large-scale molybdenum disulfide thin films directly on a plastic substrate using plasma-enhanced chemical vapor deposition. Adv. Mater. 2015, 27, 5223–5229.

190

Kim, S. J.; Mondal, S.; Min, B. K.; Choi, C. G. Highly sensitive and flexible strain–pressure sensors with cracked paddy-shaped MoS2/graphene foam/ecoflex hybrid nanostructures. ACS Appl. Mater. Interfaces 2018, 10, 36377–36384.

191

Chhetry, A.; Sharifuzzaman, M.; Yoon, H.; Sharma, S.; Xuan, X.; Park, J. Y. MoS2-decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable piezoresistive strain sensor. ACS Appl. Mater. Interfaces 2019, 11, 22531–22542.

192

Veeralingam, S.; Sahatiya, P.; Kadu, A.; Mattela, V.; Badhulika, S. Direct, one-step growth of NiSe2 on cellulose paper: A low-cost, flexible, and wearable with smartphone enabled multifunctional sensing platform for customized noninvasive personal healthcare monitoring. ACS Appl. Electron. Mater. 2019, 1, 558–568.

193

Shan, J. J.; Li, J. H.; Chu, X. Y.; Xu, M. Z.; Jin, F. J.; Wang, X. J.; Ma, L.; Fang, X.; Wei, Z. P.; Wang, X. H. High sensitivity glucose detection at extremely low concentrations using a MoS2-based field-effect transistor. RSC Adv. 2018, 8, 7942–7948.

194

Feng, J.; Peng, L. L.; Wu, C. Z.; Sun, X.; Hu, S. L.; Lin, C. W.; Dai, J.; Yang, J. L.; Xie, Y. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 2012, 24, 1969–1974.

195

Chen, X. F.; Yu, K.; Shen, Y. H.; Feng, Y.; Zhu, Z. Q. Synergistic effect of MoS2 nanosheets and VS2 for the hydrogen evolution reaction with enhanced humidity-sensing performance. ACS Appl. Mater. Interfaces 2017, 9, 42139–42148.

196

Feng, Y.; Gong, S. J.; Du, E. W.; Yu, K.; Ren, J.; Wang, Z. G.; Zhu, Z. Q. TaS2 nanosheet-based ultrafast response and flexible humidity sensor for multifunctional applications. J. Mater. Chem. C 2019, 7, 9284–9292.

Nano Research
Pages 2413-2432
Cite this article:
Zheng L, Wang X, Jiang H, et al. Recent progress of flexible electronics by 2D transition metal dichalcogenides. Nano Research, 2022, 15(3): 2413-2432. https://doi.org/10.1007/s12274-021-3779-z
Topics:

1360

Views

78

Crossref

77

Web of Science

83

Scopus

2

CSCD

Altmetrics

Received: 15 June 2021
Revised: 21 July 2021
Accepted: 26 July 2021
Published: 04 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return