AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tuning the oxidation state of Ru to surpass Pt in hydrogen evolution reaction

Rongpeng Ma1,2,§Ying Wang3,§Guoqiang Li1Long Yang1Shiwei Liu1Zhao Jin1Xiao Zhao4( )Junjie Ge1,2( )Wei Xing1,2( )
State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
State Key Laboratory of Automotive Simulation and Control School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, China

Show Author Information

Abstract

The high price of state-of-the-art Pt electrocatalysts has plagued the acidic water electrolysis technique for decades. As a cheaper alternative to Pt, ruthenium is considered an inferior hydrogen evolution reaction (HER) catalyst than Pt due to its high susceptibility to oxidation and loss of activity. Herein, we reveal that the HER activity on Ru based catalysts could surpass Pt via tuning Ru oxidation state. Specifically, RuP clusters encapsulated in few layers of N, P-doped carbon (RuP@NPC) display a minimum over potential of 15.6 mV to deliver 10 mA·cm−2. Moreover, we for the first time show that a Ru based catalyst could afford current density up to 4 A·cm−2 in a practical water electrolysis cell, with voltage even lower than the Pt/C-based cell, as well as high robustness during 200 h operation. Using a combination of experiment probing and calculation, we postulate that the suitably charged Ru (~ +2.4) catalytic center is the origin for its superior catalytic behavior. While the moderately charged Ru is empowered with optimized H adsorption behavior, the carbon encapsulation layers protect RuP clusters from over oxidation, thereby conferring the catalyst with high robustness.

Electronic Supplementary Material

Download File(s)
12274_2021_3780_MOESM1_ESM.pdf (2.8 MB)

References

1

Jiang, P.; Chen, J. T.; Wang, C. L.; Yang, K.; Gong, S. P.; Liu, S.; Lin, Z. Y.; Li, M. S.; Xia, G. L.; Yang, Y. et al. Tuning the activity of carbon for electrocatalytic hydrogen evolution via an iridium-cobalt alloy core encapsulated in nitrogen-doped carbon cages. Adv. Mater. 2018, 30, 1705324.

2

Feng, J. R.; Lv, F.; Zhang, W. Y.; Li, P. H.; Wang, K.; Yang, C.; Wang, B.; Yang, Y.; Zhou, J. H.; Lin, F. et al. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis. Adv. Mater. 2017, 29, 1703798.

3

Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced faradaic efficiency. Nat. Commun. 2020, 11, 1278.

4

Chen, L. N.; Hou, K. P.; Liu, Y. S.; Qi, Z Y.; Zheng, Q.; Lu, Y. H.; Chen, J. Y.; Chen, J. L.; Pao, C. W.; Wang, S. B. et al. Efficient hydrogen production from methanol using a single-site Pt1/CeO2 catalyst. J. Am. Chem. Soc. 2019, 141, 17995–17999.

5

Tiwari, J. N.; Sultan, S.; Myung, C. W.; Yoon, T.; Li, N. N.; Ha, M. R.; Harzandi, A. M.; Park, H. J.; Kim, D. Y.; Chandrasekaran, S. S. et al. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nat. Energy 2018, 3, 773–782.

6

Jing, S. Y.; Lu, J. J.; Yu, G. T.; Yin, S. B.; Luo, L.; Zhang, Z. S.; Ma, Y. F.; Chen, W.; Shen, P. K. Carbon-encapsulated WOx hybrids as efficient catalysts for hydrogen evolution. Adv. Mater. 2018, 30, 1705979.

7

Schlapbach, L. Hydrogen-fuelled vehicles. Nature 2009, 460, 809–811.

8

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

9

Tiwari, J. N.; Harzandi, A. M.; Ha, M. R.; Sultan, S.; Myung, C. W.; Park, H. J.; Kim, D. Y.; Thangavel, P.; Singh, A. N.; Sharma, P. et al. High-performance hydrogen evolution by Ru single atoms and nitrided-Ru nanoparticles implanted on N-doped graphitic sheet. Adv. Energy Mater. 2019, 9, 1900931.

10

Chen, C. H.; Wu, D. Y.; Li, Z.; Zhang, R.; Kuai, C. G.; Zhao, X. R.; Dong, C. K.; Qiao, S. Z.; Liu, H.; Du, X. W. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 2019, 9, 1803913.

11

Cheng, X.; Lu, Y.; Zheng, L. R.; Cui, Y. T.; Niibe, M.; Tokushima, T.; Li, H. Y.; Zhang, Y. F.; Chen, G.; Sun, S. R. et al. Charge redistribution within platinum–nitrogen coordination structure to boost hydrogen evolution. Nano Energy 2020, 73, 104739.

12

Tavakkoli, M.; Holmberg, N.; Kronberg, R.; Jiang, H.; Sainio, J.; Kauppinen, E. I.; Kallio, T.; Laasonen, K. Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction. ACS Catal. 2017, 7, 3121–3130.

13

Gu, W. L.; Hu, L. Y.; Shang, C. S.; Li, J.; Wang, E. K. Enhancement of the hydrogen evolution performance by finely tuning the morphology of Co-based catalyst without changing chemical composition. Nano Res. 2019, 12, 191–196.

14

Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core−shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

15

Ma, X. X.; Chang, Y. Q.; Zhang, Z.; Tang, J. L. Forest-like NiCoP@Cu3P supported on copper foam as a bifunctional catalyst for efficient water splitting. J. Mater. Chem. A 2018, 6, 2100–2106.

16

Hu, E. L.; Feng, Y. F.; Nai, J. W.; Zhao, D.; Hu, Y.; Lou, X. W. Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci. 2018, 11, 872–880.

17

Chung, D. Y.; Jun, S. W.; Yoon, G.; Kim, H.; Yoo, J. M.; Lee, K. S.; Kim, T.; Shin, H.; Sinha, A. K.; Kwon, S. G. et al. Large-scale synthesis of carbon-shell-coated FeP nanoparticles for robust hydrogen evolution reaction electrocatalyst. J. Am. Chem. Soc. 2017, 139, 6669–6674.

18

Najafi, L.; Bellani, S.; Oropesa-Nuñez, R.; Martín-García, B.; Prato, M.; Pasquale, L.; Panda, J. K.; Marvan, P.; Sofer, Z.; Bonaccorso, F. et al. TaS2, TaSe2, and their heterogeneous films as catalysts for the hydrogen evolution reaction. ACS Catal. 2020, 10, 3313–3325.

19

Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.;Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298–4308.

20

Wang, H.; Xiao, X.; Liu, S. Y.; Chiang, C. L.; Kuai, X. X.; Peng, C. K.; Lin, Y. C.; Meng, X.; Zhao, J. Q.; Choi, J. et al. Structural and electronic optimization of MoS2 edges for hydrogen evolution. J. Am. Chem. Soc. 2019, 141, 18578–18584.

21

Khan, M.; Yousaf, A. B.; Chen, M. M.; Wei, C. S.; Wu, X. B.; Huang, N. D.; Qi, Z. M.; Li, L. B. Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions. Nano Res. 2016, 9, 837–848.

22

Ye, W.; Ren, C. H.; Liu, D. B.; Wang, C. M.; Zhang, N.; Yan, W. S.; Song, L.; Xiong, Y. J. Maneuvering charge polarization and transport in 2HMoS2 for enhanced electrocatalytic hydrogen evolution reaction. Nano Res. 2016, 9, 2662–2671.

23

Diao, J. X.; Qiu, Y.; Liu, S. Q.; Wang, W. T.; Chen, K.; Li, H. L.; Yuan, W. Y.; Qu, Y. T.; Guo, X. H. Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: A highly efficient trifunctional electrocatalyst for orr, oer, and her. Adv. Mater. 2020, 32, e1905679.

24

Xu, Y. T.; Xiao, X. F.; Ye, Z. M.; Zhao, S. L.; Shen, R. A.; He, C. T.; Zhang, J. P.; Li, Y. D.; Chen, X. M. Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 5285–5288.

25

Cheng, H. F.; Yang, N. L.; Liu, G. G.; Ge, Y. Y.; Huang, J. T.; Yun, Q. B.; Du, Y. H.; Sun, C. J.; Chen, B.; Liu, J. W. et al. Ligand-exchange-induced amorphization of Pd nanomaterials for highly efficient electrocatalytic hydrogen evolution reaction. Adv. Mater. 2020, 32, e1902964.

26

Ramalingam, V.; Varadhan, P.; Fu, H. C.; Kim, H.; Zhang, D. L.; Chen, S. M.; Song, L.; Ma, D.; Wang, Y.; Alshareef, H. N. et al. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 2019, 31, 1903841.

27

Li, M. X.; Wang, H. Y.; Zhu, W. D.; Li, W. M.; Wang, C.; Lu, X. F. RuNi nanoparticles embedded in N-doped carbon nanofibers as a robust bifunctional catalyst for efficient overall water splitting. Adv. Sci. 2020, 7, 1901833.

28

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 2016, 138, 16174–16181.

29

Wang, J.; Wei, Z. Z.; Mao, S. J.; Li, H. R.; Wang, Y. Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 2018, 11, 800–806.

30

Li, W. D.; Liu, Y.; Wu, M.; Feng, X. L.; Redfern, S. A. T.; Shang, Y.; Yong, X.; Feng, T. L.; Wu, K. F.; Liu, Z. Y. et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater. 2018, 30, 1800676.

31

Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.

32
Zhao, Y. M.; Wang, X. W.; Li, Z.; Zhao, P. P.; Tao, C. L.; Cheng, G. Z.; Luo, W. Enhanced catalytic activity of Ru through N modification toward alkaline hydrogen electrocatalysis. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2021.05.038.
33

Liu, Y.; Li, W. D.; Wu, H.; Lu, S. Y. Carbon dots enhance ruthenium nanoparticles for efficient hydrogen production in alkaline. Acta Phys.-Chim. Sin. 2021, 37, 2009082.

34

Zhou, Y. Y.; Xie, Z. Y.; Jiang, J. X.; Wang, J.; Song, X. Y.; He, Q.; Ding, W.; Wei, Z. D. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 2020, 3, 454–462.

35

Tu, Y. C.; Deng, J.; Ma, C.; Yu, L.; Bao, X. H.; Deng, D. H. Double-layer hybrid chainmail catalyst for high-performance hydrogen evolution. Nano Energy 2020, 72, 104700.

36

Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.

37

Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 2100–2104.

38

Pu, Z. H.; Amiinu, I. S.; Kou, Z. K.; Li, W. Q.; Mu, S. C. RuP2-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew. Chem., Int. Ed. 2017, 56, 11559–11564.

39

Asefa, T. Metal-free and noble metal-free heteroatom-doped nanostructured carbons as prospective sustainable electrocatalysts. Acc. Chem. Res. 2016, 49, 1873–1883.

40

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

41

Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem., Int. Ed. 2013, 52, 3110–3116.

42

Pan, L. J.; Yu, G. H.; Zhai, D. Y.; Lee, H. R.; Zhao, W. T.; Liu, N.; Wang, H. L.; Tee, B. C. K.; Shi, Y.; Cui, Y. et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. USA 2012, 109, 9287–9292.

43

Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

44

Jeong, H.; Shin, D.; Kim, B. S.; Bae, J.; Shin, S.; Choe, C.; Han, J. W.; Lee, H. Controlling the oxidation state of Pt single atoms for maximizing catalytic activity. Angew. Chem., Int. Ed. 2020, 59, 20691–20696.

45

Chou, T. C.; Chang, C. C.; Yu, H. L.; Yu, W. Y.; Dong, C. L.; Velasco-Vélez, J. J.; Chuang, C. H.; Chen, L. C.; Lee, J. F.; Chen, J. M. et al. Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO2 reduction to ethylene. J. Am. Chem. Soc. 2020, 142, 2857–2867.

Nano Research
Pages 4321-4327
Cite this article:
Ma R, Wang Y, Li G, et al. Tuning the oxidation state of Ru to surpass Pt in hydrogen evolution reaction. Nano Research, 2021, 14(11): 4321-4327. https://doi.org/10.1007/s12274-021-3780-6
Topics:

812

Views

26

Crossref

31

Web of Science

27

Scopus

3

CSCD

Altmetrics

Received: 16 June 2021
Revised: 13 July 2021
Accepted: 26 July 2021
Published: 12 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return