AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Lignin-derived Zn single atom/N-codoped porous carbon for α-alkylation of aromatic ketones with alcohols via borrowing hydrogen strategy

Xueping Zhang1Guo-Ping Lu1( )Kun Wang2Yamei Lin3Pengcheng Wang1( )Wenbin Yi1( )
School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
School of Pharmaceutical Sciences, Wenzhou Medical College, University Town, Chashan, Wenzhou 325035, China
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuanstreet 200, Nanjing 210032, China
Show Author Information

Graphical Abstract

Abstract

A green and scalable strategy has been developed for the synthesis of lignin-derived Zn single atom/N-codoped porous carbon (LCN@Zn-SAC) containing similar ZnNx sites with carbonic anhydrases. This catalyst exhibits superior activity on the α-alkylation of ketones with alcohols via borrowing hydrogen strategy (TON up to 15 h−1) than most of previously reported works. The dehydrogenation of benzyl alcohol is the rate-determining step based on kinetic experiment results. According to experimental and theoretical calculation results, Zn electron density is inversely proportional to reaction energy barriers, because Zn sites with less positive charge (ZnN4 and ZnN3C) in Zn-SACs display better borrowing hydrogen ability than other Zn sites. Furthermore, this catalyst can be recycled by simple centrifugation, which can be reused at least 8 runs with no obvious lose in activity. To the best of our knowledge, this is the first example of non-noble metal-SAC-catalyzed α-alkylation via borrowing hydrogen strategy.

Electronic Supplementary Material

Download File(s)
3788_ESM.pdf (3.2 MB)

References

1

Davis, M. E. Ordered porous materials for emerging applications. Nature 2002, 417, 813–821.

2

Vix-Guterl, C.; Frackowiak, E.; Jurewicz, K.; Friebe, M.; Parmentier, J.; Béguin, F. Electrochemical energy storage in ordered porous carbon materials. Carbon 2005, 43, 1293–1302.

3

Liang, C. D.; Li, Z. J.; Dai, S. Mesoporous carbon materials: Synthesis and modification. Angew. Chem., Int. Ed. 2008, 47, 3696–3717.

4

Li, W.; Liu, J.; Zhao, D. Y. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 2016, 1, 16023.

5

Zhu, C. Z.; Li, H.; Fu, S. F.; Du, D.; Lin, Y. H. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 2016, 45, 517–531.

6

Rui, T.; Lu, G. P.; Zhao, X.; Cao, X.; Chen, Z. The synergistic catalysis on Co nanoparticles and CoNx sites of aniline-modified ZIF derived Co@NCs for oxidative esterification of HMF. Chin. Chem. Lett. 2021, 32, 685–690.

7

Sun, K. K.; Chen, S. J.; Li, Z. L.; Lu, G. P.; Cai, C. Synthesis of a ZIF-derived hollow yolk–shell Co@CN catalyst for the oxidative esterification of 5-hydroxymethylfurfural. Green Chem. 2019, 21, 1602–1608.

8

Lin, Y. M.; Lu, G. P.; Zhao, X.; Cao, X.; Yang, L. L.; Zhou, B. J.; Zhong, Q.; Chen, Z. Porous cobalt@N-doped carbon derived from chitosan for oxidative esterification of 5-Hydroxymethylfurfural: The roles of zinc in the synthetic and catalytic process. Mol. Catal. 2020, 482, 110695.

9

Zhong, Y. T.; Lu, Y. T.; Pan, Z. H.; Yang, J.; Du, G. H.; Chen, J. W.; Zhang, Q. K.; Zhou, H. B.; Wang, J.; Wang, C. S. et al. Efficient water splitting system enabled by multifunctional platinum-free electrocatalysts. Adv. Funct. Mater. 2021, 31, 2009853.

10

Ali Ghazi, Z.; Zhu, L. Y.; Wang, H.; Naeem, A.; Khattak, A. M.; Liang, B.; Ali Khan, N.; Wei, Z. X.; Li, L. S.; Tang, Z. Y. Efficient polysulfide chemisorption in covalent organic frameworks for high-performance lithium-sulfur batteries. Adv. Energy Mater. 2016, 6, 1601250.

11

Ji, W.; Xiao, L. L.; Ling, Y. H.; Ching, C.; Matsumoto, M.; Bisbey, R. P.; Helbling, D. E.; Dichtel, W. R. Removal of GenX and perfluorinated alkyl substances from water by amine-functionalized covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 12677–12681.

12

Shetty, D.; Jahovic, I.; Raya, J.; Ravaux, F.; Jouiad, M.; Olsen, J. C.; Trabolsi, A. An ultra-absorbent alkyne-rich porous covalent polycalix[4]arene for water purification. J. Mater. Chem. A 2017, 5, 62–66.

13

Gadwal, I.; Sheng, G.; Thankamony, R. L.; Liu, Y.; Li, H. F.; Lai, Z. P. Synthesis of sub-10 nm two-dimensional covalent organic thin film with sharp molecular sieving nanofiltration. ACS Appl. Mater. Interfaces 2018, 10, 12295.

14

Kuehl, V. A.; Yin, J. S.; Duong, P. H. H.; Mastorovich, B.; Newell, B.; Li-Oakey, K. D.; Parkinson, B. A.; Hoberg, J. O. A highly ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving. J. Am. Chem. Soc. 2018, 140, 18200–18207.

15

Xu, D.; Wu, W. D.; Qi, H. J.; Yang, R. X.; Deng, W. Q. Sulfur rich microporous polymer enables rapid and efficient removal of mercury (II) from water. Chemosphere 2018, 196, 174–181.

16

Wang, J. F.; Zhang, D. H.; Chu, F. X. Wood-derived functional polymeric materials. Adv. Mater. 2020, 33, 2001135.

17

Lin, Y. M.; Yu, J.; Zhang, X.; Fang, J. K.; Lu, G. P.; Huang, H. Carbohydrate-derived porous carbon materials: An ideal platform for green organic synthesis. Chin. Chem. Lett. 2021.

18

Duan, Y. Q.; Freyburger, A.; Kunz, W.; Zollfrank, C. Lignin/chitin films and their adsorption characteristics for heavy metal ions. ACS Sustainable Chem. Eng. 2018, 6, 6965–6973.

19

Dong, X. M.; Jin, H. L.; Wang, R. Y.; Zhang, J. J.; Feng, X.; Yan, C. Z.; Chen, S. Q.; Wang, S.; Wang, J. C.; Lu, J. High volumetric capacitance, ultralong life supercapacitors enabled by waxberry‐derived hierarchical porous carbon materials. Adv. Energy Mater. 2018, 8, 1702695.

20

Sun, K. K.; Shan, H. B.; Lu, G. P.; Cai, C.; Beller, M. Synthesis of N-heterocycles via oxidant-free dehydrocyclization of alcohols using heterogeneous catalysts. Angew. Chem., Int. Ed. 2021.

21

Qi, Z. J.; Hu, C. N.; Zhong, Y. W.; Cai, C.; Lu, G. P. The ammoxidation of alcohols over heterogeneous catalysts for the green synthesis of nitriles. Org. Chem. Front. 2021, 8, 3137–3149.

22

Li, J. J.; Guan, Q. Q.; Wu, H.; Liu, W.; Lin, Y.; Sun, Z. H.; Ye, X. X.; Zheng, X. S.; Pan, H. B.; Zhu, J. F. et al. Highly active and stable metal single-atom catalysts achieved by strong electronic metal–support interactions. J. Am. Chem. Soc. 2019, 141, 14515–14519.

23

Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

24

Lu, G. P.; Sun, K. K.; Lin Y. M.; Du, Q. X.; Zhang, J. W.; Wang K.; Wang, P. C. Single-atomic-site iron on N-doped carbon for chemoselective reduction of nitroarenes. Nano Res. 2021.

25

Ji. S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

26

Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

27

Mondelli, C.; Gözaydın, G.; Yan, N.; Pérez-Ramírez, J. Biomass valorisation over metal-based solid catalysts from nanoparticles to single atoms. Chem. Soc. Rev. 2020, 49, 3764–3782.

28

Sun, J. F.; Xu, Q. Q.; Qi, J. L.; Zhou, D.; Zhu, H. Y.; Yin, J. Z. Isolated single atoms anchored on N-doped carbon materials as a highly efficient catalyst for electrochemical and organic reactions. ACS Sustainable Chem. Eng. 2020, 8, 14630–14656.

29

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

30

Tian, K. S.; Wang, J. Y.; Guo, W. C.; Li, R. F.; Cao, L.; Xu, Z. P.; Wang, H. Y. Yolk-shell Fe3O4@Void@N-Carbon nanostructures based on one-step deposition of SiO2 and resorcinol-3-aminophenol-formaldehyde (R-APF) cocondensed resin dual layers onto Fe3O4 Nanoclusters. Macromol. Rapid Commun. 2020, 41, 2000307.

31

Wang, Y. Y.; Zhang, H.; Song, C. H.; Gao, C. J.; Zhu, G. R. Effect of aminophend/formaldehyde resin polymeric nanospheres as nanofiller on polyamide thin film nanocomposite membranes for reverse osmosis application. J. Membr. Sci. 2020, 614, 118496.

32

Schneider, N.; Lowe, D. M.; Sayle, R. A.; Tarselli, M. A.; Landrum, G. A. Big data from pharmaceutical patents: A computational analysis of medicinal chemists’ bread and butter. J. Med. Chem. 2016, 59, 4385–4402.

33

Corma, A.; Navas, J.; Sabater, M. J. Advances in one-pot synthesis through borrowing hydrogen catalysis. Chem. Rev. 2018, 118, 1410–1459.

34

Xu, Q.; Chen, J. H.; Tian, H. W.; Yuan, X. Q.; Li, S. Y.; Zhou, C. K.; Liu, J. P. Catalyst-free dehydrative α-alkylation of ketones with alcohols: green and selective autocatalyzed synthesis of alcohols and ketones. Angew. Chem., Int. Ed. 2014, 53, 225–229.

35

Huang, F.; Liu, Z. Q.; Yu, Z. K. C-alkylation of ketones and related compounds by alcohols: Transition-metal-catalyzed dehydrogenation. Angew. Chem., Int. Ed. 2016, 55, 862–875.

36

Mamidala, R.; Samser, S.; Sharma, N.; Lourderaj, U.; Venkatasubbaiah, K. Isolation and characterization of regioisomers of pyrazole-based palladacycles and their use in α-alkylation of ketones using alcohols. Organometallics 2017, 36, 3343–3351.

37

Teja, C.; Khan, F. R. N. Choline chloride-based deep eutectic systems in sequential friedländer reaction and palladium-catalyzed sp3 CH functionalization of methyl ketones. ACS Omega 2019, 4, 8046–8055.

38

Bennedsen, N. R.; Mortensen, R. L.; Kramer, S.; Kegnæs, S. Palladium on carbon-catalyzed α-alkylation of ketones with alcohols as electrophiles: Scope and mechanism. J. Catal. 2019, 371, 153–160.

39

Kwon, M. S.; Kim, N.; Seo, S. H.; Park, I. S.; Cheedrala, R. K.; Park, J. Recyclable palladium catalyst for highly selective α alkylation of ketones with alcohols. Angew. Chem., Int. Ed. 2005, 44, 6913–6915.

40

Liu, P. C.; Liang, R.; Lu, L.; Yu, Z. T.; Li, F. Use of a Cyclometalated Iridium(III) complex containing a NCN-coordinating terdentate ligand as a catalyst for the α-alkylation of ketones and N-alkylation of amines with alcohols. J. Org. Chem. 2017, 82, 1943–1950.

41

Li, J.; Zhang, W. X.; Wang, F.; Jiang, M.; Dong, X. C.; Zhao, W. L. An efficient α-alkylation of aromatic ketones with primary alcohols catalyzed by [Cp*IrCl2]2 without Solvent. Chin. J. Chem. 2012, 30, 2363–2366.

42

Buil, M. L.; Esteruelas, M. A.; Herrero, J.; Izquierdo, S.; Pastor, I. M.; Yus, M. Osmium catalyst for the borrowing hydrogen methodology: α-alkylation of arylacetonitriles and methyl ketones. ACS Catal. 2013, 3, 2072–2075.

43

Liu, S. Y.; Xu, L. Y.; Liu, C. Y.; Ren, Z. G.; Young, D. J.; Lang, J. P. Efficient alkylation of ketones with primary alcohols catalyzed by ruthenium(II)/P,N ligand complexes. Tetrahedron 2017, 73, 2374–2381.

44

Piehl, P.; Amuso, R.; Alberico, E.; Junge, H.; Gabriele, B.; Neumann, H.; Beller, M. Cyclometalated ruthenium pincer complexes as catalysts for the α-alkylation of ketones with alcohols. Chem.—Eur. J. 2020, 26, 6050–6055.

45

Vijayapritha, S.; Murugan, K.; Viswanathamurthi, P.; Vijayan, P.; Kalaiarasi, C. Synthesis and structural characterization of facile ruthenium(II) hydrazone complexes: Efficient catalysts in α-alkylation of ketones with primary alcohols via hydrogen auto transfer. Inorg. Chim. Acta 2020, 512, 119887.

46

Seck, C.; Mbaye, M. D.; Coufourier, S.; Lator, A.; Lohier, J. F.; Poater, A.; Ward, T. R.; Gaillard, S.; Renaud, J. L. Alkylation of ketones catalyzed by bifunctional iron complexes: From mechanistic understanding to application. ChemCatChem 2017, 9, 4410–4416.

47

Nallagangula, M.; Sujatha, C.; Bhat, V. T.; Namittharan, K. A nanoscale iron catalyst for heterogeneous direct N- and C-alkylations of anilines and ketones using alcohols under hydrogen autotransfer conditions. Chem. Commun. 2019, 55, 8490–8493.

48

Zhang, G. Q.; Wu, J.; Zeng, H. S.; Zhang, S.; Yin, Z. W.; Zheng, S. P. Cobalt-catalyzed α-alkylation of ketones with primary alcohols. Org. Lett. 2017, 19, 1080–1083.

49

Charvieux, A.; Giorgi, J. B.; Duguet, N.; Métay, E. Solvent-free direct α-alkylation of ketones by alcohols catalyzed by nickel supported on Silica–Alumina. Green Chem. 2018, 20, 4210–4216.

50

Tan, D. W.; Li, H. X.; Zhu, D. L.; Li, H. Y.; Young, D. J.; Yao, J. L.; Lang, J. P. Ligand-controlled copper(I)-catalyzed cross-coupling of secondary and primary alcohols to α-Alkylated Ketones, Pyridines, and Quinolines. Org. Lett. 2018, 20, 608–611.

51

Chakraborty, S.; Daw, P.; David, Y. B.; Milstein, D. Manganese-catalyzed α-alkylation of ketones, esters, and amides using alcohols. ACS Catal. 2018, 8, 10300–10305.

52

Qiu, Y.; Zhang, Y. L.; Jin, L.; Pan, L.; Du, G. M.; Ye, D. D.; Wang, D. W. Immobilization of manganese dioxide nanoparticles on modified poly 2,4-dichlorostyrene microspheres: A highly efficient and recyclable catalyst for borrowing hydrogen reactions. Org. Chem. Front. 2019, 6, 3420–3427.

53

Lan, X. B.; Ye, Z. R.; Huang, M.; Liu, J. H.; Liu, Y.; Ke, Z. F. Nonbifunctional outer-sphere strategy achieved highly active α-alkylation of ketones with alcohols by N-heterocyclic Carbene manganese (NHC-Mn). Org. Lett. 2019, 21, 8065–8070.

54

Huang, M.; Li, Y. K.; Li, Y. W.; Liu, J. H.; Shu, S. W.; Liu, Y.; Ke, Z. F. Room temperature n-heterocyclic carbene manganese catalyzed selective N-alkylation of anilines with alcohols. Chem. Commun. 2019, 55, 6213–6216.

55

Tang, S.; Zeng, L.; Liu, Y. C.; Lei, A. W. Zinc-catalyzed dehydrogenative cross-coupling of terminal alkynes with aldehydes: Access to ynones. Angew. Chem. 2015, 127, 16076–16079.

56

Cui, X. J.; Dai, X. C.; Surkus, A. E.; Junge, K.; Kreyenschulte, C.; Agostini, G.; Rockstroh, N.; Beller, M. Zinc single atoms on N-doped carbon: An efficient and stable catalyst for CO2 fixation and conversion. Chin. J. Catal. 2019, 40, 1679–1685.

57

Fang, M. W.; Wang, X. P.; Li, X. Y.; Zhu, Y.; Xiao, G. Z.; Feng, J. J.; Jiang, X. H.; Lv, K. L.; Zhu, Y.; Lin, W. F. Curvature-induced Zn 3d electron return on Zn−N4 single-atom carbon nanofibers for boosting electroreduction of CO2. ChemCatChem 2021, 13, 603–609.

58

Sankar, V.; Kathiresan, M.; Sivakumar, B.; Mannathan, S. Zinc-Catalyzed N-alkylation of aromatic amines with alcohols: A ligand-free approach. Adv. Synth. Catal. 2020, 362, 4409–4414.

59

Li, J. L.; Li, C. Y.; Feng, S. Q.; Zhao, Z. A.; Zhu, H. J.; Ding, Y. J. Atomically dispersed Zn-Nx Sites in N-doped carbon for reductive N-formylation of nitroarenes with formic acid. ChemCatChem 2020, 12, 1546–1550.

60

Ji, P. F.; Park, J.; Gu, Y.; Clark, D. S.; Hartwig, J. F. Abiotic reduction of ketones with silanes catalysed by carbonic anhydrase through an enzymatic zinc hydride. Nat. Chem. 2021, 13, 312–318.

61

Cai, J. J.; Zhou, Q. Y.; Gong, X. F.; Liu, B.; Zhang, Y. L.; Dai, Y. K.; Gu, D. M.; Zhao, L.; Sui, X. L.; Wang, Z. B. Metal-free amino acid glycine-derived nitrogen-doped carbon aerogel with superhigh surface area for highly efficient Zn-Air batteries. Carbon 2020, 167, 75–84.

62

Wang, Q.; Ina, T.; Chen, W. T.; Shang, L.; Sun, F. F.; Wei, S. H.; Sun-Waterhouse, D.; Telfer, S. G.; Zhang, T. R.; Waterhouse, G. I. N. Evolution of Zn(II) single atom catalyst sites during the pyrolysis-induced transformation of ZIF-8 to N-doped carbons. Sci. Bull. 2020, 65, 1743–1751.

63

Yang, F.; Song, P.; Liu, X. Z.; Mei, B. B.; Xing, W.; Jiang, Z.; Gu, L.; Xu, W. L. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem., Int. Ed. 2018, 57, 12303–12307.

64

Wang, N.; Liu, Z. H.; Ma, J. Y.; Liu, J. J.; Zhou, P.; Chao, Y. G.; Ma, C. B.; Bo, X. J.; Liu, J.; Hei, Y. S. et al. Sustainability perspective-oriented synthetic strategy for zinc single-atom catalysts boosting electrocatalytic reduction of carbon dioxide and oxygen. ACS Sustainable Chem. Eng. 2020, 8, 13813–13822.

65

Wang, J.; Li, H. G.; Liu, S. H.; Hu, Y. F.; Zhang, J.; Xia, M. R.; Hou, Y. L.; Tse, J.; Zhang, J. J.; Zhao, Y. F. Turning on Zn 4s electrons in a N2-Zn-B2 configuration to stimulate remarkable ORR performance. Angew. Chem., Int. Ed. 2021, 60, 181–185.

66

Enthaler, S. Rise of the zinc age in homogeneous catalysis? ACS Catal. 2013, 3, 150–158.

67

Wang, Y. Z.; Furukawa, S.; Yan, N. Identification of an active NiCu catalyst for nitrile synthesis from alcohol. ACS Catal. 2019, 9, 6681–6691.

68
Grossman, R. B. The solvation effects may reduce the energy barrier in the reaction containing polar transition states. In The Art of Writing Reasonable Organic Reaction Mechanisms; 2nd ed.; Grossman, R. B., Ed.; Springer-Verlag Press: New York, 2003.
Nano Research
Pages 1874-1881
Cite this article:
Zhang X, Lu G-P, Wang K, et al. Lignin-derived Zn single atom/N-codoped porous carbon for α-alkylation of aromatic ketones with alcohols via borrowing hydrogen strategy. Nano Research, 2022, 15(3): 1874-1881. https://doi.org/10.1007/s12274-021-3788-y
Topics:

1221

Views

46

Crossref

43

Web of Science

42

Scopus

0

CSCD

Altmetrics

Received: 18 June 2021
Revised: 26 July 2021
Accepted: 01 August 2021
Published: 02 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return