AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Photo-thermoelectric generator integrated in graphene-based actuator for self-powered sensing function

Peidi Zhou1,2,3Jian Lin1,2,3Wei Zhang1,2,3Zhiling Luo1,2,3Luzhuo Chen1,2,3( )
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou 350117, China
Show Author Information

Graphical Abstract

A graphene-based light-driven actuator is proposed. By integrating a photo-thermoelectric generator into the actuator, the self-powered sensing function isrealized.

Abstract

Smart actuators integrated with sensing functions are taking a significant role in constructing intelligent robots. However, the detection of sensing signals in most actuators requires external electrical power, lacking in the self-powered feature. Herein, we report a graphene-based light-driven actuator with self-powered sensing function, which is designed by integrating a photo-thermoelectric generator into the actuator intelligently. When one part of the actuator is irradiated by near-infrared light, it shows a deformation with bending curvature up to 1.5 cm−1, owing to the mismatch volume changes between two layers of the actuator. Meanwhile, the temperature difference across the actuator generates a voltage signal due to the photo-thermoelectric effect. The Seebeck coefficient is higher than 40 μV/K. Furthermore, the self-powered voltage signal is consistent with the deformation trend, which can be used to characterize the deformation state of actuator without external electrical power. We further demonstrate a gripper and a bionic hand. Their deformations mimic the motions of human hand (or finger), even making complex gestures. Concurrently, they can output self-powered voltage signals for sensing. We hope this research will pave a new way for self-powered devices, state-of-the-art intelligent robots, and other integrated multi-functional systems.

Electronic Supplementary Material

Video
12274_2021_3791_MOESM1_ESM.mp4
12274_2021_3791_MOESM2_ESM.mp4
Download File(s)
12274_2021_3791_MOESM3_ESM.pdf (703.3 KB)

References

1

Gorissen, B.; Reynaerts, D.; Konishi, S.; Yoshida, K.; Kim, J. W.; De Volder, M. Elastic inflatable actuators for soft robotic applications. Adv. Mater. 2017, 29, 1604977.

2

Hines, L.; Petersen, K.; Lum, G. Z.; Sitti, M. Soft actuators for small-scale robotics. Adv. Mater. 2017, 29, 1603483.

3

Hu, Y.; Wu, G.; Lan, T.; Zhao, J. J; Liu, Y.; Chen, W. A graphene-based bimorph structure for design of high performance photoactuators. Adv. Mater. 2015, 27, 7867–7873.

4

Mu, J. K.; Wang, G.; Yan, H. P.; Li, H. Y.; Wang, X. M.; Gao, E. L.; Hou, C. Y.; Pham, A. T. C.; Wu, L. J.; Zhang, Q. H. et al. Molecular-channel driven actuator with considerations for multiple configurations and color switching. Nat. Commun. 2018, 9, 590.

5

Jayathilaka, W. A. D. M.; Qi, K.; Qin, Y. L.; Chinnappan, A.; Serrano-García, W.; Baskar, C.; Wang, H. B.; He, J. X.; Cui, S. Z.; Thomas, S. W. et al. Significance of nanomaterials in wearables: A review on wearable actuators and sensors. Adv. Mater. 2019, 31, 1805921.

6

Zhao, Q.; Liang, Y. H.; Ren, L.; Yu, Z. L.; Zhang, Z. H.; Ren, L. Q. Bionic intelligent hydrogel actuators with multimodal deformation and locomotion. Nano Energy 2018, 51, 621–631.

7

Du, L.; Xu, Z. Y.; Huang, C. L.; Zhao, F. Y.; Fan, C. J.; Dai, J.; Yang, K. K.; Wang, Y. Z. From a body temperature-triggered reversible shape-memory material to high-sensitive bionic soft actuators. Appl. Mater. Today 2020, 18, 100463.

8

Hu, Y.; Liu, J. Q.; Chang, L. F.; Yang, L. L.; Xu, A. F.; Qi, K.; Lu, P.; Wu, G.; Chen, W.; Wu, Y. C. Electrically and sunlight-driven actuator with versatile biomimetic motions based on rolled carbon nanotube bilayer composite. Adv. Funct. Mater. 2017, 27, 1704388.

9

Chen, H.; Ge, Y. H.; Ye, S. J.; Zhu, Z. F.; Tu, Y. F.; Ge, D. T.; Xu, Z.; Chen, W.; Yang, X. M. Water transport facilitated by carbon nanotubes enables a hygroresponsive actuator with negative hydrotaxis. Nanoscale 2020, 12, 6104–6110.

10

Yu, L.; Peng, R.; Rivers, G.; Zhang, C.; Si, P. X.; Zhao, B. X. Multifunctional liquid crystal polymer network soft actuators. J. Mater. Chem. A 2020, 8, 3390–3396.

11

Ning, W.; Wang, Z. H.; Liu, P.; Zhou, D. L.; Yang, S. Y.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Multifunctional super-aligned carbon nanotube/polyimide composite film heaters and actuators. Carbon 2018, 139, 1136–1143.

12

Jing, L.; Li, K. R.; Yang, H. T.; Chen, P. Y. Recent advances in integration of 2D materials with soft matter for multifunctional robotic materials. Mater. Horiz. 2020, 7, 54–57.

13

Chen, P. Y.; Zhang, M. K.; Liu, M. C.; Wong, I. Y.; Hurt, R. H. Ultrastretchable graphene-based molecular barriers for chemical protection, detection, and actuation. ACS Nano 2018, 12, 234–244.

14

Xing, S. T.; Wang, P. P.; Liu, S. Q.; Xu, Y. H.; Zheng, R. M.; Deng, Z. F.; Peng, Z. F.; Li, J. Y.; Wu, Y. Y.; Liu, L. A shape-memory soft actuator integrated with reversible electric/moisture actuating and strain sensing. Compos. Sci. Technol. 2020, 193, 108133.

15

Amjadi, M.; Sitti, M. Self-sensing paper actuators based on graphite-carbon nanotube hybrid films. Adv. Sci. 2018, 5, 1800239.

16

Chen, L. Z.; Weng, M.; Zhou, P. D.; Huang, F.; Liu, C. H.; Fan, S. S.; Zhang, W. Graphene-based actuator with integrated-sensing function. Adv. Funct. Mater. 2019, 29, 1806057.

17

Zhao, H. T.; Hu, R.; Li, P.; Gao, A. Z.; Sun, X. T.; Zhang, X. H.; Qi, X. J.; Fan, Q.; Liu, Y. D.; Liu, X. Q. et al. Soft bimorph actuator with real-time multiplex motion perception. Nano Energy 2020, 76, 104926.

18

Tian, J. J.; Shi, R.; Liu, Z.; Ouyang, H.; Yu, M.; Zhao, C. C.; Zou, Y.; Jiang, D. J.; Zhang, J. S.; Li, Z. Self-powered implantable electrical stimulator for osteoblasts’ proliferation and differentiation. Nano Energy 2019, 59, 705–714.

19

Luo, Z. L.; Liu, C. H.; Fan, S. S. A super compact self-powered device based on paper-like supercapacitors. J. Mater. Chem. A 2019, 7, 3642–3647.

20

Wen, Z.; Shen, Q. Q.; Sun, X. H. Nanogenerators for self-powered gas sensing. Nano-Micro Lett. 2017, 9, 45.

21

Feng, Y. G.; Zhang, L. Q.; Zheng, Y. B.; Wang, D. A.; Zhou, F.; Liu, W. M. Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy 2019, 55, 260–268.

22

Han, Y.; Wang, W. Q.; Zou, J. D.; Li, Z.; Cao, X.; Xu, S. M. Self-powered energy conversion and energy storage system based on triboelectric nanogenerator. Nano Energy 2020, 76, 105008.

23

Wen, F.; Wang, H.; He, T. Y. Y.; Shi, Q. F.; Sun, Z. D.; Zhu, M. L.; Zhang, Z. X.; Cao, Z. G.; Dai, Y. B.; Zhang, T. et al. Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism. Nano Energy 2020, 67, 104266.

24

Ke, K. H.; Chung, C. K. High-performance Al/PDMS TENG with novel complex morphology of two-height microneedles array for high-sensitivity force-sensor and self-powered application. Small 2020, 16, 2001209.

25

Khan, U.; Kim, S. W. Triboelectric nanogenerators for blue energy harvesting. ACS Nano 2016, 10, 6429–6432.

26

Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.

27

Xi, Y.; Guo, H. Y.; Zi, Y. L.; Li, X. G.; Wang, J.; Deng, J. N.; Li, S. M.; Hu, C. G.; Cao, X.; Wang, Z. L. Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor. Adv. Energy Mater. 2017, 7, 1602397.

28

Chen, S. E.; Pang, Y. K.; Yuan, H. Y.; Tan, X. B.; Cao, C. Y. Smart soft actuators and grippers enabled by self-powered tribo-skins. Adv. Mater. Technol. 2020, 5, 1901075.

29

Chen, J.; Han, K.; Luo, J. J.; Xu, L.; Tang, W.; Wang, Z. L. Soft robots with self-powered configurational sensing. Nano Energy 2020, 77, 105171.

30

Jin, T.; Sun, Z. D.; Li, L.; Zhang, Q.; Zhu, M. L.; Zhang, Z. X.; Yuan, G. J.; Chen, T.; Tian, Y. Z.; Hou, X. Y. et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 2020, 11, 5381.

31

Dhawan, R.; Madusanka, P.; Hu, G. Y.; Debord, J.; Tran, T.; Maggio, K.; Edwards, H.; Lee, M. Si0.97Ge0.03 microelectronic thermoelectric generators with high power and voltage densities. Nat. Commun. 2020, 11, 4362.

32

Elyamny, S.; Dimaggio, E.; Magagna, S.; Narducci, D.; Pennelli, G. High power thermoelectric generator based on vertical silicon nanowires. Nano Lett. 2020, 20, 4748–4753.

33

Jung, Y. S.; Jeong, D. H.; Kang, S. B.; Kim, F.; Jeong, M. H.; Lee, K. S.; Son, J. S.; Baik, J. M.; Kim, J. S.; Choi, K. J. Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference. Nano Energy 2017, 40, 663–672.

34

Zhang, X. F.; Gao, W. Q.; Su, X. W.; Wang, F. L.; Liu, B. S.; Wang, J. J.; Liu, H.; Sang, Y. H. Conversion of solar power to chemical energy based on carbon nanoparticle modified photo-thermoelectric generator and electrochemical water splitting system. Nano Energy 2018, 48, 481–488.

35

Zhao, W. R.; Zhang, F. J.; Dai, X. J.; Jin, W. L.; Xiang, L. Y.; Ding, J. M.; Wang, X.; Wan, Y.; Shen, H. G.; He, Z. H. et al. Enhanced thermoelectric performance of n-type organic semiconductor via electric field modulated photo-thermoelectric effect. Adv. Mater. 2020, 32, 2000273.

36

Cui, L. F.; Zhang, P. P.; Xiao, Y. K.; Liang, Y.; Liang, H. X.; Cheng, Z. H.; Qu, L. T. High rate production of clean water based on the combined photo-electro-thermal effect of graphene architecture. Adv. Mater. 2018, 30, 1706805.

37

Lundeberg, M. B.; Gao, Y. D.; Woessner, A.; Tan, C.; Alonso-González, P.; Watanabe, K.; Taniguchi, T.; Hone, J.; Hillenbrand, R.; Koppens, F. H. L. Thermoelectric detection and imaging of propagating graphene plasmons. Nat. Mater. 2017, 16, 204–207.

38

Juntunen, T.; Jussila, H.; Ruoho, M.; Liu, S. H.; Hu, G. H.; Albrow-Owen, T.; Ng, L. W. T.; Howe, R. C. T.; Hasan, T.; Sun, Z. P. et al. Inkjet Printed large-area flexible few-layer graphene thermoelectrics. Adv. Funct. Mater. 2018, 28, 1800480.

39

Huang, L.; Santiago, D.; Loyselle, P.; Dai, L. M. Graphene-based nanomaterials for flexible and wearable supercapacitors. Small 2018, 14, 1800879.

40

Torrisi, F.; Carey, T. Graphene, related two-dimensional crystals and hybrid systems for printed and wearable electronics. Nano Today 2018, 23, 73–96.

41

Zhang, D.; Song, Y. D.; Ping, L.; Xu, S. W.; Yang, D.; Wang, Y. H.; Yang, Y. Photo-thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive strain sensing. Nano Res. 2019, 12, 2982–2987.

42

Chen, X. X.; Liu, X.; Li, S. H.; Wang, W. M.; Wei, D.; Wu, Y. L.; Liu, Z. F. Tunable wideband slot antennas based on printable graphene inks. Nanoscale 2020, 12, 10949–10955.

43

Tung, T. T.; Yoo, J.; Alotaibi, F. K.; Nine, M. J.; Karunagaran, R.; Krebsz, M.; Nguyen, G. T.; Tran, D. N. H.; Feller, J. F.; Losic, D. Graphene oxide-assisted liquid phase exfoliation of graphite into graphene for highly conductive film and electromechanical sensors. ACS Appl. Mater. Interfaces 2016, 8, 16521–16532.

44

Tung, V. C.; Huang, J. H.; Kim, J.; Smith, A. J.; Chu, C. W.; Huang, J. X. Towards solution processed all-carbon solar cells: A perspective. Energ Environ. Sci. 2012, 5, 7810–7818.

45

Wang, X. D.; Jiao, N. D.; Tung, S.; Liu, L. Q. Photoresponsive graphene composite bilayer actuator for soft robots. ACS Appl. Mater. Interfaces 2019, 11, 30290–30299.

46

Cheng, H. H.; Zhao, F.; Xue, J. L.; Shi, G. Q.; Jiang, L.; Qu, L. T. One single graphene oxide film for responsive actuation. ACS Nano 2016, 10, 9529–9535.

Nano Research
Pages 5376-5383
Cite this article:
Zhou P, Lin J, Zhang W, et al. Photo-thermoelectric generator integrated in graphene-based actuator for self-powered sensing function. Nano Research, 2022, 15(6): 5376-5383. https://doi.org/10.1007/s12274-021-3791-3
Topics:

1298

Views

23

Crossref

25

Web of Science

21

Scopus

1

CSCD

Altmetrics

Received: 11 May 2021
Revised: 02 August 2021
Accepted: 03 August 2021
Published: 29 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return