Graphical Abstract

The development of reliable catalysts with both excellent activity and recyclability for carbon dioxide (CO2) hydrogenation is challenging. Herein, a ternary hybrid heterogeneous catalyst, involving mononuclear Ru complex, N, P-containing porous organic polymers (POPs), and mesoporous hollow carbon spheres (Ru3+-POPs@MHCS) is reported for CO2 hydrogenation to formate. Based on comprehensive structural analyses, we demonstrated that Ru3+-POPs were successfully immobilized within MHCS. The optimized Ru3+-0.5POPs@MHCS catalyst, which was obtained with about 5 wt.% Ru3+ and 0.5 mmol POPs polymers confined into 0.3 g MHCS, exhibited high catalytic activity for CO2 hydrogenation to formate (turnover number (TON) > 1,200 for 24 h under mild reaction conditions (4.0 MPa, 120 °C)) and improved durability, compared to Ru3+ catalysts without POPs polymers (Ru3+-MHCS) and unencapsulated MHCS (Ru3+-0.5POPs) catalysts. The improved catalytic performance is attributed to the high surface area and large pore volume of MHCS which favors dispersion and stabilization of Ru3+-POPs. Furthermore, the MHCS and POPs showed high CO2 adsorption ability. Ru3+-POPs encapsulated into MHCS reduces the activation energy barrier for CO2 hydrogenation to formate.
Das, S.; Pérez-Ramírez, J.; Gong, J.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 2020, 49, 2937–3004.
Sun, R. Y.; Liao, Y. H.; Bai, S. T.; Zheng, M. Y.; Zhou, C.; Zhang, T.; Sels, B. F. Heterogeneous catalysts for CO2 hydrogenation to formic acid/formate: From nanoscale to single atom. Energy Environ. Sci. 2021, 14, 1247–1285.
Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 2020, 120, 7984–8034.
Artz, J.; Müller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable conversion of carbon dioxide: An integrated review of catalysis and life cycle assessment. Chem. Rev. 2018, 118, 434–504.
Alvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 2017, 117, 9804–9838.
Peter, S. C. Reduction of CO2 to chemicals and fuels: A solution to global warming and energy crisis. ACS Energy Lett. 2018, 3, 1557–1561.
Umar, M.; Ji, X. F.; Kirikkaleli, D.; Alola, A. A. The imperativeness of environmental quality in the United States transportation sector amidst biomass-fossil energy consumption and growth. J. Clean. Prod. 2021, 285, 124863.
Tackett, B. M.; Gomez, E.; Chen, J. G. Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat. Catal. 2019, 2, 381–386.
Mori, K.; Sano, T.; Kobayashi, H.; Yamashita, H. Surface engineering of a supported PdAg catalyst for hydrogenation of CO2 to formic acid: Elucidating the active Pd atoms in alloy nanoparticles. J. Am. Chem. Soc. 2018, 140, 8902–8909.
Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A. W.; Detrembleur, C. Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers. Chem. Soc. Rev. 2019, 48, 4466–4514.
Lu, W. W.; Jia, B.; Cui, B. L.; Zhang, Y.; Yao, K. S.; Zhao, Y. L.; Wang, J. J. Efficient photoelectrochemical reduction of carbon dioxide to formic acid: A functionalized ionic liquid as an absorbent and electrolyte. Angew. Chem., Int. Ed. 2017, 56, 11851–11854.
Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo-and electrochemical CO2 reduction. Chem. Rev. 2015, 115, 12936–12973.
Wang, Y.; Tan, L.; Tan, M. H.; Zhang, P. P.; Fang, Y.; Yoneyama, Y.; Yang, G. H.; Tsubaki, N. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics. ACS Catal. 2018, 9, 895–901.
Eppinger, J.; Huang, K. W. Formic acid as a hydrogen energy carrier. ACS Energy Lett. 2017, 2, 188–195.
Mori, K.; Dojo, M.; Yamashita, H. Pd and Pd-Ag nanoparticles within a macroreticular basic resin: an efficient catalyst for hydrogen production from formic acid decomposition. ACS Catal. 2013, 3, 1114–1119.
Kuwahara, Y.; Fujie, Y.; Mihogi, T.; Yamashita, H. Hollow mesoporous organosilica spheres encapsulating PdAg nanoparticles and poly (ethyleneimine) as reusable catalysts for CO2 hydrogenation to formate. ACS Catal. 2020, 10, 6356–6366.
Yang, G. X.; Kuwahara, Y.; Masuda, S.; Mori, K.; Louis, C.; Yamashita, H. PdAg nanoparticles and aminopolymer confined within mesoporous hollow carbon spheres as an efficient catalyst for hydrogenation of CO2 to formate. J. Mater. Chem. A 2020, 8, 4437–4446.
Valentini, F.; Kozell, V.; Petrucci, C.; Marrocchi, A.; Gu, Y. L.; Gelman, D.; Vaccaro, L. Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy Environ. Sci. 2019, 12, 2646–2664.
Chauvier, C.; Cantat, T. A viewpoint on chemical reductions of carbon-oxygen bonds in renewable feedstocks including CO2 and biomass. ACS Catal. 2017, 7, 2107–2115.
Kleij, A. W.; North, M.; Urakawa, A. CO2 catalysis. ChemSusChem 2017, 10, 1036–1038.
Jaleel, A.; Kim, S. H.; Natarajan, P.; Gunasekar, G. H.; Park, K.; Yoon, S.; Jung, K. D. Hydrogenation of CO2 to formates on ruthenium(III) coordinated on melamine polymer network. J. CO2 Util. 2020, 35, 245–255.
Yang, G. X.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. Pd-Cu alloy nanoparticles confined within mesoporous hollow carbon spheres for the hydrogenation of CO2 to formate. J. Phys. Chem. C 2021, 125, 3961–3971.
Huff, C. A.; Sanford, M. S. Catalytic CO2 hydrogenation to formate by a ruthenium pincer complex. ACS Catal. 2013, 3, 2412–2416.
Bernskoetter, W. H.; Hazari, N. Reversible hydrogenation of carbon dioxide to formic acid and methanol: Lewis acid enhancement of base metal catalysts. Acc. Chem. Res. 2017, 50, 1049–1058.
Sordakis, K.; Tang, C. H.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols. Chem. Rev. 2018, 118, 372–433.
Himeda, Y.; Miyazawa, S.; Hirose, T. Interconversion between formic acid and H2/CO2 using rhodium and ruthenium catalysts for CO2 fixation and H2 storage. ChemSusChem 2011, 4, 487–493.
Malaza, S. S. P.; Makhubela, B. C. E. Direct and indirect CO2 hydrogenation catalyzed by Ir (III), Rh (III), Ru (II), and Os (II) half-sandwich complexes to generate formates and N, N-diethylformamide. J. CO2 Util. 2020, 39, 101149.
Filonenko, G. A.; Van Putten, R.; Schulpen, E. N.; Hensen, E. J. M.; Pidko, E. A. Highly efficient reversible hydrogenation of carbon dioxide to formates using a ruthenium PNP-pincer catalyst. ChemCatChem 2014, 6, 1526–1530.
Estes, D. P.; Leutzsch, M.; Schubert, L.; Bordet, A.; Leitner, W. Effect of ligand electronics on the reversible catalytic hydrogenation of CO2 to formic acid using ruthenium polyhydride complexes: A thermodynamic and kinetic study. ACS Catal. 2020, 10, 2990–2998.
Kanega, R.; Ertem, M. Z.; Onishi, N.; Szalda, D. J.; Fujita, E.; Himeda, Y. CO2 hydrogenation and formic acid dehydrogenation using Ir catalysts with amide-based ligands. Organometallics 2020, 39, 1519–1531.
Onishi, N.; Kanega, R.; Fujita, E.; Himeda, Y. Carbon dioxide hydrogenation and formic acid dehydrogenation catalyzed by iridium complexes bearing pyridyl-pyrazole ligands: Effect of an electron-donating substituent on the pyrazole ring on the catalytic activity and durability. Adv. Synth. Catal. 2019, 361, 289–296.
Tanaka, R.; Yamashita, M.; Nozaki, K. Catalytic hydrogenation of carbon dioxide using Ir (III)-pincer complexes. J. Am. Chem. Soc. 2009, 131, 14168–14169.
Shao, X. Z.; Yang, X. F.; Xu, J. M.; Liu, S.; Miao, S.; Liu, X. Y.; Su, X.; Duan, H. M.; Huang, Y. Q.; Zhang, T. Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO2 to formate. Chem 2019, 5, 693–705.
Mori, K.; Taga, T.; Yamashita, H. Isolated single-atomic Ru catalyst bound on a layered double hydroxide for hydrogenation of CO2 to formic acid. ACS Catal. 2017, 7, 3147–3151.
Preti, D.; Resta, C.; Squarcialupi, S.; Fachinetti, G. Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst. Angew. Chem., Int. Ed. 2011, 50, 12551–12554.
Kuwahara, Y.; Fujie, Y.; Yamashita, H. Poly(ethyleneimine)-tethered Ir complex catalyst immobilized in titanate nanotubes for hydrogenation of CO2 to formic acid. ChemCatChem 2017, 9, 1906–1914.
Masuda, S.; Mori, K.; Futamura, Y.; Yamashita, H. PdAg nanoparticles supported on functionalized mesoporous carbon: promotional effect of surface amine groups in reversible hydrogen delivery/storage mediated by formic acid/CO2. ACS Catal. 2018, 8, 2277–2285.
Fu, X. P.; Peres, L.; Esvan, J.; Amiens, C.; Philippot, K.; Yan, N. An air-stable, reusable Ni@Ni(OH)2 Nanocatalyst for CO2/bicarbonate hydrogenation to formate. Nanoscale 2021, 13, 8931–8939.
Sun, Q. M.; Chen, B. W. J.; Wang, N.; He, Q.; Chang, A.; Yang, C. M.; Asakura, H.; Tanaka, T.; Hülsey, M. J.; Wang, C. H. et al. Zeolite-encaged Pd-Mn nanocatalysts for CO2 hydrogenation and formic acid dehydrogenation. Angew. Chem., Int. Ed. 2020, 132, 20358–20366.
Yang, G. X.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. PdAg alloy nanoparticles encapsulated in N-doped microporous hollow carbon spheres for hydrogenation of CO2 to formate. Appl. Catal. B: Environ. 2021, 283, 119628.
Gunasekar, G. H.; Shin, J.; Jung, K. D.; Park, K.; Yoon, S. Design strategy toward recyclable and highly efficient heterogeneous catalysts for the hydrogenation of CO2 to formate. ACS Catal. 2018, 8, 4346–4353.
Chen, B. F.; Dong, M. H.; Liu, S. L.; Xie, Z. B.; Yang, J. J.; Li, S. P.; Wang, Y. Y.; Du, J.; Liu, H. Z.; Han, B. X. CO2 hydrogenation to formate catalyzed by Ru coordinated with a N, P-containing polymer. ACS Catal. 2020, 10, 8557–8566.
Kann, A.; Hartmann, H.; Besmehn, A.; Hausoul, P. J. C.; Palkovits, R. Hydrogenation of CO2 to formate over ruthenium immobilized on solid molecular phosphines. ChemSusChem 2018, 11, 1857–1865.
Zhang, H. W.; Noonan, O.; Huang, X. D.; Yang, Y. N.; Xu, C.; Zhou, L.; Yu, C. Z. Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes. ACS Nano 2016, 10, 4579–4586.
Gao, X. C.; Cui, R. X.; Ji, G. F.; Liu, Z. L. Size and surface controllable metal-organic frameworks (MOFs) for fluorescence imaging and cancer therapy. Nanoscale 2018, 10, 6205–6211.
Alkrad, J. A.; Mrestani, Y.; Stroehl, D.; Wartewig, S.; Neubert, R. Characterization of enzymatically digested hyaluronic acid using NMR, Raman, Ir, and UV-Vis spectroscopies. J. Pharm. Biomed. Anal. 2003, 31, 545–550.
Xu, Z. M.; Xing, W. Y.; Hou, Y. B.; Zou, B.; Han, L. F.; Hu, W. Z.; Hu, Y. The combustion and pyrolysis process of flame-retardant polystyrene/cobalt-based metal organic frameworks (MOF) nanocomposite. Combust. Flame 2021, 226, 108–116.
Cheng, K. P.; Svec, F.; Lv, Y. Q.; Tan, T. W. Hierarchical micro-and mesoporous Zn-based metal-organic frameworks templated by hydrogels: Their use for enzyme immobilization and catalysis of knoevenagel reaction. Small 2019, 15, 1902927.
Kuwahara, Y.; Kango, H.; Yamashita, H. Pd nanoparticles and aminopolymers confined in hollow silica spheres as efficient and reusable heterogeneous catalysts for semihydrogenation of alkynes. ACS Catal. 2019, 9, 1993–2006.
Sreenavya, A.; Baskaran, T.; Ganesh, V.; Sharma, D.; Kulal, N.; Sakthivel, A. Framework of ruthenium-containing nickel hydrotalcite-type material: Preparation, characterisation, and its catalytic application. RSC Adv. 2018, 8, 25248–25257.
Xu, H. B.; Zhang, X. Q.; Liu, D.; Chun, Y.; Fan, X. Y. A high efficient method for introducing reactive amines onto carbon fiber surfaces using hexachlorocyclophosphazene as a new coupling agent. Appl. Surf. Sci. 2014, 320, 43–51.
Arrigo, R.; Schuster, M. E.; Xie, Z. L.; Yi, Y.; Wowsnick, G.; Sun, L. L.; Hermann, K. E.; Friedrich, M.; Kast, P.; Hävecker, M. et al. Nature of the N-Pd interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal 2015, 5, 2740–2753.
Boscoletto, A. B.; Gleria, M.; Milani, R.; Meda, L.; Bertani, R. Surface functionalization with phosphazene substrates—part VII. Silicon-based materials functionalized with hexachlorocyclo-phosphazene. Surf. Interface Anal. 2009, 41, 27–33.
Liu, C.; Yan, H. X.; Feng, S. Y.; Li, T. T.; Zhang, M. M. Hyperbranched cyclotriphosphazene polymer-grafted graphene with amphipathicity. Chem. Lett. 2014, 43, 1263–1265.
Qadir, M. I.; Weilhard, A.; Fernandes, J. A.; De Pedro, I.; Vieira, B. J. C.; Waerenborgh, J. C.; Dupont, J. Selective carbon dioxide hydrogenation driven by ferromagnetic RuFe nanoparticles in ionic liquids. ACS Catal. 2018, 8, 1621–1627.
Filonenko, G. A.; Vrijburg, W. L.; Hensen, E. J. M.; Pidko, E. A. On the activity of supported Au catalysts in the liquid phase hydrogenation of CO2 to formates. J. Catal. 2016, 343, 97–105.
Masuda, S.; Mori, K.; Kuwahara, Y.; Yamashita, H. PdAg nanoparticles supported on resorcinol-formaldehyde polymers containing amine groups: The promotional effect of phenylamine moieties on CO2 transformation to formic acid. J. Mater. Chem. A 2019, 7, 16356–16363.
Guo, L. S.; Zhang, P. P.; Cui, Y.; Liu, G. B.; Wu, J. H.; Yang, G. H.; Yoneyama, Y.; Tsubaki, N. One-pot hydrothermal synthesis of nitrogen functionalized carbonaceous material catalysts with embedded iron nanoparticles for CO2 hydrogenation. ACS Sustainable Chem. Eng. 2019, 7, 8331–8339.
Di Felice, L.; Courson, C.; Foscolo, P. U.; Kiennemann, A. Iron and nickel doped alkaline-earth catalysts for biomass gasification with simultaneous tar reformation and CO2 capture. Int. J. Hydrogen Energy 2011, 36, 5296–5310.
An, B.; Zeng, L. Z.; Jia, M.; Li, Z.; Lin, Z. K.; Song, Y.; Zhou, Y.; Cheng, J.; Wang, C.; Lin, W. B. Molecular iridium complexes in metal-organic frameworks catalyze CO2 hydrogenation via concerted proton and hydride transfer. J. Am. Chem. Soc. 2017, 139, 17747–17750.