AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

One-step plasmonic welding and photolithographic patterning of silver nanowire network by UV-programable surface atom diffusion

Gui-Shi Liu1Ting Wang1Yexiong Wang1Huajian Zheng1Yunsen Chen1Zijie Zeng1Lei Chen1Yaofei Chen1Bo-Ru Yang2( )Yunhan Luo1( )Zhe Chen1
Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
Show Author Information

Graphical Abstract

Abstract

Silver nanowire (AgNW) based transparent electrode (TE) plays a pivotal role in optoelectronics where TE is generally required to have fine pattern and high performance. Despite the rapid technological advances in either welding or patterning of AgNWs, there are few studies that combine the two processes in a simple and practical manner. Here, aiming to fabricate high-performance patterned AgNW TE, we develop a simplified photolithography that enables both plasmonic nanowelding with low-level UV exposure (20 mW/cm2) and high-resolution micropatterning without photoresist and etching process by conjugating AgNW with diphenyliodonium nitrate (DPIN) and UV-curable cellulose. The cellulose as a binder can effectively enhance plasmonic heating, adhesion, and stability, while the photosensitive DPIN, capable of modulating surface atom diffusion, can boost the plasmonic welding at AgNW junction and induce patterning in AgNW network with Plateau-Rayleigh instability. The fabricated AgNW TE has high figure of merit of up to 1, 000 (3.7 Ω/sq at 90% transmittance) and minimal pattern size down to 3 µm, along with superior robustness. Finally, a flexible smart window with high performance is demonstrated using the patterned and welded AgNW TEs, verifying the applicability of the simplified photolithography technique to optoelectronic devices.

References

1

Zhang, Y. K.; Ng, S. W.; Lu, X.; Zheng, Z. J. Solution–processed transparent electrodes for emerging thin–film solar cells. Chem. Rev. 2020, 120, 2049–2122.

2

Azani, M. R.; Hassanpour, A.; Torres, T. Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)–free flexible solar cells. Adv. Energy Mater. 2020, 10, 2002536.

3

Chang, I.; Park, T.; Lee, J.; Lee, M. H.; Ko, S. H.; Cha, S. W. Bendable polymer electrolyte fuel cell using highly flexible Ag nanowire percolation network current collectors. J. Mater. Chem. A 2013, 1, 8541–8546.

4

Zeng, Z. H.; Wu, T. T.; Han, D. X.; Ren, Q.; Siqueira, G.; Nyström, G. Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 2020, 14, 2927–2938.

5

Yang, Y.; Chen, S.; Li, W. L.; Li, P.; Ma, J. G.; Li, B. S.; Zhao, X. N.; Ju, Z. S.; Chang, H. C.; Xiao, L. et al. Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 2020, 14, 8754–8765.

6

Kang, S.; Cho, S.; Shanker, R.; Lee, H.; Park, J.; Um, D. S.; Lee, Y.; Ko, H. Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin–attachable loudspeakers and microphones. Sci. Adv. 2018, 4, eaas8772.

7

Chen, W.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Flexible, transparent, and conductive Ti3C2Tx MXene–silver nanowire films with smart acoustic sensitivity for high–performance electromagnetic interference shielding. ACS Nano 2020, 14, 16643–16653.

8

Gao, Q.; Kopera, B. A. F.; Zhu, J.; Liao, X. J.; Gao, C.; Retsch, M.; Agarwal, S.; Greiner, A. Breathable and flexible polymer membranes with mechanoresponsive electric resistance. Adv. Funct. Mater. 2020, 30, 1907555.

9

Shi, X. L.; Wang, H. K.; Xie, X. T.; Xue, Q. W.; Zhang, J. Y.; Kang, S. Q.; Wang, C. H.; Liang, J. J.; Chen, Y. S. Bioinspired ultrasensitive and stretchable MXene–based strain sensor via nacre–mimetic microscale “brick–and–mortar” architecture. ACS Nano 2019, 13, 649–659.

10

Li, M.; Chen, S. J.; Fan, B. Y.; Wu, B. Y.; Guo, X. J. Printed flexible strain sensor array for bendable interactive surface. Adv. Funct. Mater. 2020, 30, 2003214.

11

Huang, S. Y.; Liu, Y. N.; Jafari, M.; Siaj, M.; Wang, H. N.; Xiao, S. Y.; Ma, D. L. Highly stable Ag–Au core–shell nanowire network for ITO–free flexible organic electrochromic device. Adv. Funct. Mater. 2021, 31, 2010022.

12

Kim, H.; Lee, H.; Ha, I.; Jung, J.; Won, P.; Cho, H.; Yeo, J.; Hong, S.; Han, S.; Kwon, J. et al. Biomimetic color changing anisotropic soft actuators with integrated metal nanowire percolation network transparent heaters for soft robotics. Adv. Funct. Mater. 2018, 28, 1801847.

13

Kang, H.; Zhao, C. L.; Huang, J. R.; Ho, D. H.; Megra, Y. T.; Suk, J. W.; Sun, J.; Wang, Z. L.; Sun, Q. J.; Cho, J. H. Fingerprint–inspired conducting hierarchical wrinkles for energy–harvesting E–skin. Adv. Funct. Mater. 2019, 29, 1903580.

14

Jeong, S.; Cho, H.; Han, S.; Won, P.; Lee, H.; Hong, S.; Yeo, J.; Kwon, J.; Ko, S. H. High efficiency, transparent, reusable, and active PM2.5 filters by hierarchical Ag nanowire percolation network. Nano Lett. 2017, 17, 4339–4346.

15

Lee, H. E.; Park, J. H.; Kim, T. J.; Im, D.; Shin, J. H.; Kim, D. H.; Mohammad, B.; Kang, I. S.; Lee, K. J. Novel electronics for flexible and neuromorphic computing. Adv. Funct. Mater. 2018, 28, 1801690.

16

Lee, J.; Lee, P.; Lee, H.; Lee, D.; Lee, S. S.; Ko, S. H. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 2012, 4, 6408–6414.

17

Hong, S.; Lee, H.; Lee, J.; Kwon, J.; Han, S.; Suh, Y. D.; Cho, H.; Shin, J.; Yeo, J.; Ko, S. H. Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv. Mater. 2015, 27, 4744–4751.

18

Song, T. B.; Chen, Y.; Chung, C. H.; Yang, Y.; Bob, B.; Duan, H. S.; Li, G.; Tu, K. N.; Huang, Y.; Yang, Y. Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 2014, 8, 2804–2811.

19

Selzer, F.; Floresca, C.; Kneppe, D.; Bormann, L.; Sachse, C.; Weiß, N.; Eychmüller, A.; Amassian, A.; Müller–Meskamp, L.; Leo, K. Electrical limit of silver nanowire electrodes: Direct measurement of the nanowire junction resistance. Appl. Phys. Lett. 2016, 108, 163302.

20

Chen, G. N.; Bi, L. L.; Yang, Z. L.; Chen, L. J.; Wang, G. X.; Ye, C. H. Water–based purification of ultrathin silver nanowires toward transparent conductive films with a transmittance higher than 99%. ACS Appl. Mater. Interfaces 2019, 11, 22648–22654.

21

Gaynor, W.; Burkhard, G. F.; McGehee, M. D.; Peumans, P. Smooth nanowire/polymer composite transparent electrodes. Adv. Mater. 2011, 23, 2905–2910.

22

Seo, J. H.; Hwang, I.; Um, H. D.; Lee, S.; Lee, K.; Park, J.; Shin, H.; Kwon, T. H.; Kang, S. J.; Seo, K. Cold isostatic–pressured silver nanowire electrodes for flexible organic solar cells via room–temperature processes. Adv. Mater. 2017, 29, 1701479.

23

Yoon, S. S.; Khang, D. Y. Room–temperature chemical welding and sintering of metallic nanostructures by capillary condensation. Nano Lett. 2016, 16, 3550–3556.

24

Sun, Y. N.; Chang, M. J.; Meng, L. X.; Wan, X. J.; Gao, H. H.; Zhang, Y. M.; Zhao, K.; Sun, Z. H.; Li, C. X.; Liu, S. R. et al. Flexible organic photovoltaics based on water–processed silver nanowire electrodes. Nat. Electron. 2019, 2, 513–520.

25

Liu, Y.; Zhang, J. M.; Gao, H.; Wang, Y.; Liu, Q. X.; Huang, S. Y.; Guo, C. F.; Ren, Z. F. Capillary–force–induced cold welding in silver–nanowire–based flexible transparent electrodes. Nano Lett. 2017, 17, 1090–1096.

26

Garnett, E. C.; Cai, W. S.; Cha, J. J.; Mahmood, F.; Connor, S. T.; Christoforo, M. G.; Cui, Y.; McGehee, M. D.; Brongersma, M. L. Self–limited plasmonic welding of silver nanowire junctions. Nat. Mater. 2012, 11, 241–249.

27

Han, S.; Hong, S.; Ham, J.; Yeo, J.; Lee, J.; Kang, B.; Lee, P.; Kwon, J.; Lee, S. S.; Yang, M. Y. et al. Fast plasmonic laser nanowelding for a Cu–nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 2014, 26, 5808–5814.

28

Lee, P.; Ham, J.; Lee, J.; Hong, S.; Han, S.; Suh, Y. D.; Lee, S. E.; Yeo, J.; Lee, S. S.; Lee, D. et al. Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite. Adv. Funct. Mater. 2014, 24, 5671–5678.

29

Lee, J.; Lee, P.; Lee, H. B.; Hong, S.; Lee, I.; Yeo, J.; Lee, S. S.; Kim, T. S.; Lee, D.; Ko, S. H. Room–temperature nanosoldering of a very long metal nanowire network by conducting–polymer–assisted joining for a flexible touch–panel application. Adv. Funct. Mater. 2013, 23, 4171–4176.

30

Aghazadehchors, S.; Nguyen, V. H.; Muñoz–Rojas, D.; Jiménez, C.; Rapenne, L.; Nguyen, N. D.; Bellet, D. Versatility of bilayer metal oxide coatings on silver nanowire networks for enhanced stability with minimal transparency loss. Nanoscale 2019, 11, 19969–19979.

31

Chung, W. H.; Jang, Y. R.; Hwang, Y. T.; Kim, S. H.; Kim, H. S. The surface plasmonic welding of silver nanowires via intense pulsed light irradiation combined with NIR for flexible transparent conductive films. Nanoscale 2020, 12, 17725–17737.

32

Park, J. H.; Hwang, G. T.; Kim, S.; Seo, J.; Park, H. J.; Yu, K.; Kim, T. S.; Lee, K. J. Flash–induced self–limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Adv. Mater. 2017, 29, 1603473.

33

Park, J. H.; Han, S.; Kim, D.; You, B. K.; Joe, D. J.; Hong, S.; Seo, J.; Kwon, J.; Jeong, C. K.; Park, H. J. et al. Plasmonic–tuned flash Cu nanowelding with ultrafast photochemical–reducing and interlocking on flexible plastics. Adv. Funct. Mater. 2017, 27, 1701138.

34

Wang, J.; Chen, H.; Zhao, Y.; Zhong, Z. B.; Tang, Y.; Liu, G. Z.; Feng, X.; Xu, F. C.; Chen, X. H.; Cai, D. J. et al. Programmed ultrafast scan welding of Cu nanowire networks with a pulsed ultraviolet laser beam for transparent conductive electrodes and flexible circuits. ACS Appl. Mater. Interfaces 2020, 12, 35211–35221.

35

Jang, Y. R.; Chung, W. H.; Hwang, Y. T.; Hwang, H. J.; Kim, S. H.; Kim, H. S. Selective wavelength plasmonic flash light welding of silver nanowires for transparent electrodes with high conductivity. ACS Appl. Mater. Interfaces 2018, 10, 24099–24107.

36

Liang, X. W.; Lu, J. B.; Zhao, T.; Yu, X. C.; Jiang, Q. S.; Hu, Y. G.; Zhu, P. L.; Sun, R.; Wong, C. P. Facile and efficient welding of silver nanowires based on UVA–induced nanoscale photothermal process for roll–to–roll manufacturing of high–performance transparent conducting films. Adv. Mater. Interfaces 2019, 6, 1801635.

37

Chung, W. H.; Park, S. H.; Joo, S. J.; Kim, H. S. UV–assisted flash light welding process to fabricate silver nanowire/graphene on a PET substrate for transparent electrodes. Nano Res. 2018, 11, 2190–2203.

38

Zhong, Z. Y.; Lee, S. H.; Ko, P.; Kwon, S.; Youn, H.; Seok, J. Y.; Woo, K. Control of thermal deformation with photonic sintering of ultrathin nanowire transparent electrodes. Nanoscale 2020, 12, 2366–2373.

39

Fang, Y. S.; Ding, K.; Wu, Z. C.; Chen, H. T.; Li, W. B.; Zhao, S.; Zhang, Y. L.; Wang, L.; Zhou, J.; Hu, B. Architectural engineering of nanowire network fine pattern for 30 μm wide flexible quantum dot light–emitting diode application. ACS Nano 2016, 10, 10023–10030.

40

Jun, S.; Kim, S. O.; Lee, H. J.; Han, C. J.; Lee, C. J.; Yu, Y. T.; Lee, C. R.; Ju, B. K.; Kim, Y.; Kim, J. W. Transparent, pressure–sensitive, and healable e–skin from a UV–cured polymer comprising dynamic urea bonds. J. Mater. Chem. A 2019, 7, 3101–3111.

41

Liu, G. S.; Yang, F.; Xu, J. Z.; Kong, Y. F.; Zheng, H. J.; Chen, L.; Chen, Y. F.; Wu, M. X.; Yang, B. R.; Luo, Y. H. et al. Ultrasonically patterning silver nanowire–acrylate composite for highly sensitive and transparent strain sensors based on parallel cracks. ACS Appl. Mater. Interfaces 2020, 12, 47729–47738.

42

Han, J. K.; Yang, J. K.; Gao, W. W.; Bai, H. Ice–templated, large–area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 2021, 31, 2010155.

43

Um, D. S.; Lee, Y.; Kim, T.; Lim, S.; Lee, H.; Ha, M.; Khan, Z.; Kang, S.; Kim, M. P.; Kim, J. Y. et al. High–resolution filtration patterning of silver nanowire electrodes for flexible and transparent optoelectronic devices. ACS Appl. Mater. Interfaces 2020, 12, 32154–32162.

44

Tybrandt, K.; Vörös, J. Fast and efficient fabrication of intrinsically stretchable multilayer circuit boards by wax pattern assisted filtration. Small 2016, 12, 180–184.

45

Park, J.; Kim, G.; Lee, B.; Lee, S.; Won, P.; Yoon, H.; Cho, H.; Ko, S. H.; Hong, Y. Highly customizable transparent silver nanowire patterning via inkjet–printed conductive polymer templates formed on various surfaces. Adv. Mater. Technol. 2020, 5, 2000042.

46

Wan, T.; Guan, P. Y.; Guan, X. W.; Hu, L.; Wu, T.; Cazorla, C.; Chu, D. W. Facile patterning of silver nanowires with controlled polarities via inkjet–assisted manipulation of interface adhesion. ACS Appl. Mater. Interfaces 2020, 12, 34086–34094.

47

Ko, D.; Gu, B.; Kang, S. J.; Jo, S.; Hyun, D. C.; Kim, C. S.; Kim, J. Critical work of adhesion for economical patterning of silver nanowire–based transparent electrodes. J. Mater. Chem. A 2019, 7, 14536–14544.

48

Li, W. W.; Meredov, A.; Shamim, A. Coat–and–print patterning of silver nanowires for flexible and transparent electronics. npj Flex. Electron. 2019, 3, 19.

49

Park, K.; Woo, K.; Kim, J.; Lee, D.; Ahn, Y.; Song, D. H; Kim, H.; Oh, D.; Kwon, S.; Lee, Y. High–resolution and large–area patterning of highly conductive silver nanowire electrodes by reverse offset printing and intense pulsed light irradiation. ACS Appl. Mater. Interfaces 2019, 11, 14882–14891.

50

Peng, Y. Y.; Du, B. Y.; Xu, X. W.; Yang, J. L.; Lin, J.; Ma, C. Q. Transparent triboelectric sensor arrays using gravure printed silver nanowire electrodes. Appl. Phys. Express 2019, 12, 066503.

51

Liu, G. S.; Liu, C.; Chen, H. J.; Cao, W.; Qiu, J. S.; Shieh, H. P. D.; Yang, B. R. Electrically robust silver nanowire patterns transferrable onto various substrates. Nanoscale 2016, 8, 5507–5515.

52

Lin, Y.; Yuan, W.; Ding, C.; Chen, S. L.; Su, W. M.; Hu, H. L.; Cui, Z.; Li, F. S. Facile and efficient patterning method for silver nanowires and its application to stretchable electroluminescent displays. ACS Appl. Mater. Interfaces 2020, 12, 24074–24085.

53

Jin, H. M.; Park, D. Y.; Jeong, S. J.; Lee, G. Y.; Kim, J. Y.; Mun, J. H.; Cha, S. K.; Lim, J.; Kim, J. S.; Kim, K. H. et al. Flash light millisecond self–assembly of high χ block copolymers for wafer–scale sub–10 nm nanopatterning. Adv. Mater. 2017, 29, 1700595.

54

Sun, Y. G.; Yin, Y. D.; Mayers, B. T.; Herricks, T.; Xia, Y. N. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chem. Mater. 2002, 14, 4736–4745.

55

Zhong, L.; Sansoz, F.; He, Y.; Wang, C. M.; Zhang, Z.; Mao, S. X. Slip–activated surface creep with room–temperature super–elongation in metallic nanocrystals. Nat. Mater. 2017, 16, 439–445.

56

Liu, G. S.; Xu, Y. W.; Kong, Y. F.; Wang, L.; Wang, J.; Xie, X.; Luo, Y. H.; Yang, B. R. Comprehensive stability improvement of silver nanowire networks via self–assembled mercapto inhibitors. ACS Appl. Mater. Interfaces 2018, 10, 37699–37708.

57

Takahata, R.; Yamazoe, S.; Warakulwit, C.; Limtrakul, J.; Tsukuda, T. Rayleigh instability and surfactant–mediated stabilization of ultrathin gold nanorods. J. Phys. Chem. C 2016, 120, 17006–17010.

58

Patil, K. C.; Rao, C. N. R.; Lacksonen, J. W.; Dryden, C. E. The silver nitrate–iodine reaction: Iodine nitrate as the reaction intermediate. J. Inorg. Nucl. Chem. 1967, 29, 407–412.

59

Nichols, F. A. On the spheroidization of rod–shaped particles of finite length. J. Mater. Sci. 1976, 11, 1077–1082.

60

Lu, H. F.; Zhang, D.; Ren, X. G.; Liu, J.; Choy, W. C. H. Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano–network electrode. ACS Nano 2014, 8, 10980–10987.

61

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll–to–roll production of 30–inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

62

Huang, Y. L.; Tian, Y. H.; Hang, C. J.; Liu, Y. B.; Wang, S.; Qi, M. M.; Zhang, H.; Zhao, J. Self–limited nanosoldering of silver nanowires for high–performance flexible transparent heaters. ACS Appl. Mater. Interfaces 2019, 11, 21850–21858.

63

Fang, Y. S.; Wu, Z. C.; Li, J.; Jiang, F. Y.; Zhang, K.; Zhang, Y. L.; Zhou, Y. H.; Zhou, J.; Hu, B. High–performance hazy silver nanowire transparent electrodes through diameter tailoring for semitransparent photovoltaics. Adv. Funct. Mater. 2018, 28, 1705409.

64

Maurer, J. H. M.; González–García, L.; Reiser, B.; Kanelidis, I.; Kraus, T. Templated self–assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics. Nano Lett. 2016, 16, 2921–2925.

65

Jiang, S.; Hou, P. X.; Chen, M. L.; Wang, B. W.; Sun, D. M.; Tang, D. M.; Jin, Q.; Guo, Q. X.; Zhang, D. D.; Du, J. H. et al. Ultrahigh–performance transparent conductive films of carbon–welded isolated single–wall carbon nanotubes. Sci. Adv. 2018, 4, eaap9264.

66

Hu, X. T.; Meng, X. C.; Zhang, L.; Zhang, Y. Y.; Cai, Z. R.; Huang, Z. Q.; Su, M.; Wang, Y.; Li, M. Z.; Li, F. Y. et al. A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells. Joule 2019, 3, 2205–2218.

67

Barnes, T. M.; Reese, M. O.; Bergeson, J. D.; Larsen, B. A.; Blackburn, J. L.; Beard, M. C.; Bult, J.; van de Lagemaat, J. Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides. Adv. Energy Mater. 2012, 2, 353–360.

68

Xue, Z. G.; Xu, M. K.; Zhao, Y. L.; Wang, J.; Jiang, X. F.; Yu, L. W.; Wang, J. Z.; Xu, J.; Shi, Y.; Chen, K. J. et al. Engineering island–chain silicon nanowires via a droplet mediated Plateau–Rayleigh transformation. Nat. Commun. 2016, 7, 12836.

69

Shin, K.; Park, J. S.; Han, J. H.; Choi, Y.; Chung, D. S.; Kim, S. H. Patterned transparent electrode with a continuous distribution of silver nanowires produced by an etching–free patterning method. Sci. Rep. 2017, 7, 40087.

70

Kim, D. J.; Hwang, D. Y.; Park, J. Y.; Kim, H. K. Liquid crystal–based flexible smart windows on roll–to–roll slot die–coated Ag nanowire network films. J. Alloys Compd. 2018, 765, 1090–1098.

71

Khaligh, H. H.; Liew, K.; Han, Y. N.; Abukhdeir, N. M.; Goldthorpe, I. A. Silver nanowire transparent electrodes for liquid crystal–based smart windows. Sol. Energy Mater. Sol. Cells 2015, 132, 337–341.

Nano Research
Pages 2582-2591
Cite this article:
Liu G-S, Wang T, Wang Y, et al. One-step plasmonic welding and photolithographic patterning of silver nanowire network by UV-programable surface atom diffusion. Nano Research, 2022, 15(3): 2582-2591. https://doi.org/10.1007/s12274-021-3796-y
Topics:

902

Views

19

Crossref

18

Web of Science

19

Scopus

2

CSCD

Altmetrics

Received: 22 June 2021
Revised: 19 July 2021
Accepted: 05 August 2021
Published: 04 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return